

fm geotechnik I Dipl.-Ing. (FH) Ralf Frankovsky Dipl.-Geol. Klaus Merk Amtzell und Altusried - Kimratshofen

> Baugrunderkundungen Baugrund- und Gründungsgutachten Grundbaustatik Hydrogeologie

Geotechnischer Bericht

Neubau Kinderhaus Ebenweiler

Projekt Nr. A2211024

Bauvorhaben Neubau Kinderhaus Ebenweiler

Östlich Unterwaldhauser Straße 21

Flurstücke Nr. 1009/1, 1010/1, 1012/1, 1013/1

Gemarkung: Ebenweiler

<u>Auftraggeber</u> Gemeinde Ebenweiler

Unterwaldhauser Straße 2

88370 Ebenweiler

Planung Holzbau kreativ, Ingenieur- und Planungsgesellschaft mbH

Dipl. Ing. (FH), Dipl. Wirtsch. Ing (FH) Helmut Schwegler

Schenkenwaldstraße 30 88273 Fronreute - Staig

<u>Datum</u> 16.03.2023

Bearbeitung Dipl. Ing. (FH) Ralf Frankovsky

fm geotechnik GbR Wiesflecken 6 88279 Amtzell fm geotechnik GbR Mayrhalde 11 87452 Altusried

Telefon 07522/9784407 Fax 07522/9784408 Mobil Frankovsky 01525/4295638 Telefon 08373/3020379 Fax 08373/3020378 Mobil Merk 01525/4269775 <u>Gesellschafter</u> Ralf Frankovsky Klaus Merk

<u>Steuernummer</u> 91070/47116

<u>USt.-IdNr.</u> DE278062424

Inhalt

- 1. Vorgang
- 2. Baugrundschichtung, bautechnische Beschreibung, Bodenkennwerte und Bodenklassifizierung , Umwelttechnische Untersuchung
- 3. Schicht- und Grundwasserverhältnisse, Durchlässigkeit der anstehenden Böden
- 4. Gründung und baubegleitende Maßnahmen

<u>Anlagen</u>

- 1.1 Übersichtslageplan
- 1.2 Lageplan mit Untersuchungspunkten, M 1:500
- 2 Geologisches Profil: RKS1 DPH1 RKS2 DPH2 RKS3, M. d. H. 1:50
- 3 Sickversuch RKS3
- 4.1-2 Fundamentdiagramme
- 5.1 Analyseübersicht (AÜ1) Bodenproben MP1 Mu bis MP3 Mu mit Bewertung nach BBodSchV Vorsorgewerte
- 5.2 Analyseübersicht (AÜ2) Bodenproben MP1 Mu bis MP3 Mu mit Bewertung nach BBodSchV Wirkungspfad Boden-Mensch
- 5.3 Analyseübersicht (AÜ3) Bodenproben MP4 bis MP7 mit Bewertung nach VwV
- 6.1 Prüfbericht Agrolab Labor GmbH 3370843 ff. (Proben MP1 Mu bis MP3 Mu)
- 6.2 Prüfbericht Agrolab Labor GmbH 3370848 ff. (Proben MP4 bis MP7)

Verwendete Unterlagen

- [1] Holzbau Kreativ Helmut Schwegler, Fronreute
 Bauvorhaben 361-02 Neubau Kinderhaus Ebenweiler
- [1.1] Plansatz Baugesuch; Grundrisse, Schnitte; Planstand 19.07.2022
- [1.2] Lageplan M 1:500; Planstand 15.12.2022

1. Vorgang

In Ebenweiler ist am westlichen Ortsrand der Neubau eines Kindergartens geplant. Unser Büro wurde von der Gemeinde Ebenweiler beauftragt, eine Baugrunderkundung im Bereich des Neubaus durchzuführen und einen geotechnischen Bericht zu erstellen.

Zu diesem Zweck wurden am 14.12.2022 drei Rammkernsondierungen DN60 (RKS1/22 bis RKS3/22) und zwei schwere Rammsondierungen (DPH1/22 und DPH2/22) abgeteuft.

Die Lage und die Ansatzhöhen der Untersuchungspunkte wurden von unserem Büro eingemessen. Als Höhenbezugspunkt diente ein Kanaldeckel nördlich der Unterwaldhauser Straße Straße, dessen Höhe in [1.2] mit 591.95 angegeben wird.

Die Lage der Aufschlusspunkte ist im Grundrissplan in der Anlage 1.2 dargestellt. Die Höhen der Ansatzpunkte, ebenso wie die detaillierte, nach DIN EN ISO 14688-1 und -2, DIN 18 196

Projekt Nr.: 2211024

Neubau Kinderhaus Ebenweiler

und DIN 18300 (2012) klassifizierte Bodenaufnahme, sind in dem geologischen Profil der Anlage 2 aufgeführt.

Aus den Untersuchungsstellen wurden Bodenproben zur umwelttechnischen Vordeklaration entnommen. Bei den Oberbodenproben erfolgte die Untersuchung auf die Vorsorgewerte und die Prüfwerte für den Wirkungspfad Boden-Mensch der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV). Die darunter folgenden Schichten wurden auf die Parameter der Verwaltungsvorschrift des UMBW für die Verwertung von als Abfall eingestuftem Bodenmaterial (VwV) untersucht. Die Ergebnisse der Untersuchungen finden sich in den Analysenübersichten und im Laborbericht wieder (Anlagen 5 und 6).

Das Baufeld ist relativ eben und wird derzeit als Wiese genutzt. Innerhalb des Baufeldes verläuft der verdolte Seegraben, welcher im Zuge des Neubaus rückgebaut werden soll.

2. Bodenschichten, bautechnische Beschreibung, Bodenkennwerte und Bodenklassifizierung

2.1 Bodenschichten

Anhand der ausgeführten Aufschlüsse kann am Projektstandort von folgender genereller Schichtenfolge ausgegangen werden:

Auffüllungen (lokal) (rezent)

Mutterboden (Quartär: Holozän)
Bachlehm (Quartär: Holozän)
Postglazialablagerungen (ungegliedert) (Quartär, Holozän)
Beckenablagerungen (ungegliedert) (Quartär, Pleistozän).

Im Einzelnen wurden mit den Rammkernsondierungen und den schweren Rammsondierungen folgende Schichtglieder bzw. Schichttiefen festgestellt.

Seite 4 von 21

Projekt Nr.: 2211024

Neubau Kinderhaus Ebenweiler

<u>Tabelle 1:</u> Schichtglieder und Schichttiefen RKS1, RKS2, RKS3, DPH1, DPH2 (von - bis m unter Gelände)

Aufschluss Ansatzhöhe m ü. NN	RKS1/22 591.89	RKS2/22 592.15	RKS3/22 591.95	DPH1/22 ¹⁾ 591.69	DPH2/22 ¹⁾ 592.24
Auffüllung Mutterboden	n. a.	0,00 - 0,30	n. a.	n.a.	n. a.
Auffüllung Schluff + Kies	n.a.	0,30 – 1,00	n.a.	n.a.	n. a.
Mutterboden	0,00 - 0,40	n. a.	0,00 - 0,40	0,00 - 0,30	0,00 - 0,20
Bachlehm	0,40 – 1,40	n. a.	n. a.	0,30 – 1,00	0,20 - 0,90
Postglazialkies	1,40 – 3,80	1,00 – 3,50	0,40 – 3,90	1,00 – 3,20	0,90 – 3,00
Postglazialsand	3,80 – 4,80	3,50 – 5,20	3,90 – 4,70	3,20 – 4,30	3,00 – 3,70
Beckenschluff	4,80 – 5,30	5,20 – 5,70	4,70 – 5,00	4,30 – 5,00	3,70 – 4,00
Beckensand	5,30 – 8,00*	5,70 – 8,00*	5,00 – 7,00*	5,00 – 7,80*	4,00 – 7,80*

^{*} Endtiefe

2.2 Bautechnische Beschreibung der Schichten

Zusätzlich zu der Schichtansprache, die bei dem Profil der Anlage 2 dargestellt ist, werden die bautechnischen Eigenschaften der Böden wie folgt beurteilt:

Auffüllungen

Auffüllungen wurden mit der Sondierung RKS2 angetroffen. Unter einem aufgefüllten Mutterboden folgt ein sandiges Schluff + Kies Gemisch. Die Konsistenz der bindigen Matrix ist weich. In der Rammschappe waren keine anthropogenen Einschlüsse erkennbar. Der aufgefüllte Boden ist organoleptisch unauffällig, Die umwelttechnische Untersuchung ergab ebenfalls keine Hinweise auf einen Schadstoffeintrag (siehe Abschnitt 2.5).

Insgesamt ist das Schichtpaket der Auffüllungen aufgrund der inhomogenen Zusammensetzung sowie der nur weichen Konsistenz zum Lastabtrag nicht heranzuziehen.

n. a. = bis zur Endtiefe nicht angetroffen

¹⁾ Anmerkung: Da es sich bei Rammsondierungen (DPH) um ein indirektes Aufschlussverfahren handelt (keine Bodenförderung), sind die dargestellten Schichtgrenzen bei den Rammsondierungen, insbesondere der Übergang von Schichten gleicher Konsistenz oder gleichem Lagerungszustand, als Interpretation zu sehen.

Projekt Nr.: 2211024

Neubau Kinderhaus Ebenweiler

Mutterboden

Dort wo keine Auffüllungen vorhanden sind, wird die oberste Schicht im Untersuchungsgebiet von einer Mutterbodenauflage gebildet. Der Mutterboden setzt sich aus einem tonigen, schwach feinsandigen bis feinsandigen sowie humosen Schluff zusammen. Der Oberboden ist zum Abtrag von Lasten nicht geeignet. Der Mutterboden kann in statisch nicht relevanten Bereichen zur Geländeangleichung auf dem Baufeld wiederverwendet werden (Wirkungspfad Boden-Mensch unbedenklich, s. Kapitel 2.5 und Anlage 5.2)

Eine Wiederverwendung als durchwurzelbare Bodenschicht im Rahmen von Rekultivierungsmaßnahmen oder bei landwirtschaftlicher Folgenutzung ist den bisherigen Ergebnissen zufolge möglich (s. Kapitel 2.5 und Anlage 5.1). Sollte dieser Verwertungsweg weiterverfolgt werden, sind höher auflösende Beprobungen (über Haufwerke oder Einstiche) anzuraten.

Bachlehm

Der in der RKS1 direkt aufgeschlossenen Bachlehm ist als ein sandiger bis stark sandiger, gering kiesiger Schluff anzusprechen. Lokal sind noch Pflanzenreste zu erkennen. Der Bachlehm ist stark feucht, seine Konsistenz ist weich.

Der Bachlehm ist frost- und witterungsempfindlich. Bei Zutritt von Wasser (z. B. durch Niederschläge) weicht der Boden schnell auf und verliert an Tragfähigkeit.

Aufgrund seiner weichen Konsistenz und den organischen Einlagerungen ist der Bachlehm als gering bis mäßig tragfähig einzustufen.

Postglazialkies

Der Postglazialkies wurde bei allen Sondierungen erkundet. Er setzt sich aus einem schwach schluffigen bis schluffigen, sandigen Fein- bis Grobkies zusammen. Der Lagerungszustand des Postglazialkieses ist mitteldicht. Der Postglazialkies ist als gut tragfähig einzustufen.

Innerhalb des Postglazialkieses ist grundsätzlich mit Steinen (\emptyset > 63 - 200 mm) und Blöcken (\emptyset > 200 - 600 mm) zu rechnen, vereinzelt können auch große Blöcke (\emptyset > 600 mm) eingeschalten sein. Nach der alten DIN 18300 (Fassung 2012) gehören stark steinige und blockige Böden zur Bodenklasse 5. Bei mehr als 30% Blöcken (\emptyset > 200 - 600 mm) gehört der Boden zur Bodenklasse 6, große Blöcke (\emptyset > 600 mm) werden zur Bodenklasse 7 gerechnet.

Postglazialsand

Der Postglazialsand ist im erkundeten Bereich als ein schwach schluffiger bis schluffiger, schwach kiesiger bis kiesiger Fein- bis Grobsand anzusprechen. Der Postglazialsand ist mitteldicht gelagert und stellt in ungestörtem Zustand einen gut tragfähigen Boden dar. Im Postglazialsand wurde am 14.12.2022 Wasser angetroffen. Ist der Sandboden wassergesättigt, hat er thixotrope Eigenschaften. Bei mechanischer Einwirkung neigt der Boden bei

Neubau Kinderhaus Ebenweiler

Seite 6 von 21

Wassersättigung zur Verflüssigung (Liquefaktion). Im dann vorhandenen Boden-Wasser-Gemisch können keine Scherbeanspruchungen mehr aufgenommen werden, der Sand gehört dann zur (alten) Bodenklasse 2. Im freien Anschnitt, z. B. durch Baugruben, fließen die Sande bei einer Wassersättigung aus.

Beckenschluff + Beckensand

Beckenton

Oberhalb des Beckensandes liegt ein dünnes Band Beckenschluff. Der Beckenschluff ist als toniger, gering sandiger bis schwach sandiger sowie gering kiesiger Schluff zu beschreiben. Die Konsistenz des Beckenschluff ist weich bis steif. Der Beckenschluff ist für den Abtrag von Gebäudelasten gering bis mäßig geeignet. Auch der Beckenton ist frost- und witterungsempfindlich. Bei Zutritt von Wasser (z. B. durch Niederschläge) weicht der Boden schnell auf und verliert an Tragfähigkeit.

Beckensand

Die grau und ocker gefärbten Beckensande setzen sich aus schluffigen Fein- bis Grobsanden zusammen, die locker bis mitteldicht gelagert sind. Die Beckensande kommen erst in Tiefen ab rd. 5 m u. GOK vor. Die Beckensande sind vollständig wassergesättigt. Die Beckensande haben dieselben thixotropen Eigenschaften wie die Postglazialsande.

2.3 Bodenkennwerte und Klassifizierung

Entsprechend der Baugrundschichtung des geologischen Profils (Anlage 2) sowie der Beschreibung der Böden, werden im Folgenden die für den Erdbau notwendigen Bodenkennwerte und Bodenklassen angegeben:

Tabelle 2: Charakteristische Bodenkennwerte (Erfahrungswerte)

Schicht	Wichte (erdfeucht) γ [kN/m³]	Wichte (unter Auftrieb) γ' [kN/m³]	Reibungswinkel φ' [°]	Kohäsion (dräniert) c' [kN/m²]	Steifemodul E _s [MN/m²]
Auffüllung Schluff + Kies	18 – 20	8 – 10	25,0 – 27,5	0	(5 – 8)
Bachlehm	18 – 19	8 – 9	25,0 – 27,5	0	2 – 4
Postglazialkies	20 – 22*	10 – 12*	32,5 – 35,0	0	40 – 60
Postglazialsand	19 – 20	9 – 10	30,0 - 32,5**	0	20 – 30
Beckenschluff	18 – 19	8 – 9	25,0 – 27,5	0 – 2	6 – 8
Beckensand	19 – 20	9 – 10	27,5 – 30,0**	0	10 – 15

^{*} Steine und Blöcke

Die vorgenannten Mittelwerte leiten sich aus den vorliegenden Untersuchungen und aus Erfahrungswerten von vergleichbaren Böden ab. Die Bodenparameter gelten für die anstehenden Schichten im ungestörten Lagerungsverband.

^{**} kann sich bei Verflüssigung deutlich verringern

Seite 7 von 21

fm geotechnik

Tabelle 3: Klassifizierung der Böden

Schicht	Bodengruppe DIN18196	Bodenklasse DIN18300 (2012)	Frostempfindlichkeit ZTV E-StB 17	Verdichtbarkeits- klasse ZTV A-StB 12
Auffüllung Mutterboden	(OU)	1	F3	-
Auffüllung Schluff + Kies	(UM/GU*)	4	F3	V3
Bachlehm	UM/TM	4	F3	V3
Postglazialkies	GU lokal GU*	3 / 4 (5 / 6 / 7) ^{xx}	F2 bei GU F3 bei GU*	V1 bei GU V2 bei GU*
Postglazialsand	SU lokal SU*	3 / 4 (2) ×	F2 bis F3	V2 mit Wasser V3
Beckenschluff	UM/TM	4	F3	V3
Beckensand	SU*	4 / (2) ×	F3	V2 mit Wasser V3

x Bei Verflüssigung Bodenklasse 2 (Postglazialsand und Beckensand)

Blöcke > 600 mm sind im Postglazialkies möglich (dann Bkl. 7)

Im Jahr 2015 wurde die Umstellung der DIN 18300 beschlossen, bei der die Böden nach Homogenbereichen eingeteilt werden. Hierbei werden die "alten" Charakteristika Lösen, Laden und Fördern mit den neuen Charakteristika des Behandelns, Einbauens und Verdichtens vereint. Böden gleicher Eigenschaften werden zu Homogenbereichen zusammengefasst. Die Homogenbereiche entsprechen im Wesentlichen der bereits gewählten geologisch orientierten Schichtenfolge in diesem Gutachten, da hierbei ebenfalls Bodenschichten mit gleichen Eigenschaften zusammengefasst werden. Im Zuge der Umstellung der DIN 18300 wurden auch andere Erdbaunormen (z. B. die DIN18319) bei welchen Bodenklassen angegeben waren auf das neue System der Homogenbereiche umgestellt.

Die anhand der Aufschlüsse festgelegten Homogenbereiche sind in der nachfolgenden Tabelle dargestellt.

xx je nach Anteil und Größe der Steine und Blöcke

Projekt Nr.: 2211024 Neubau Kinderhaus Ebenweiler

Seite 8 von 21

Tabelle 4: Einteilung der Schichten in Homogenbereiche (für Erdarbeiten gem. DIN18300)

Homogenbereich	Baugrundschicht
HBE-A1	Auffüllung, Schluff + Kies
HBE-B1	Bachlehm
HBE-B2	Postglazialkies
HBE-B3	Postglazialsand
HBE-B4	Beckenschluff
HBE-B5	Beckensand

Der Oberboden ist nicht mehr in der DIN18300 (Erdarbeiten) enthalten, sondern ist nach der DIN 18320 (Landschaftsarbeiten) zu erfassen und auszuweisen. Er ist unabhängig von seinem Zustand vor dem Lösen ein eigener Homogenbereich. Da die Auffüllungen nicht gründungs- bzw. baurelevant sind, werden diese nicht aufgeführt.

Tabelle 5: Kennwerte der Homogenbereiche (Erfahrungswerte)

Homogenbereich	Anteil Steine [%] 63 – 200 mm	Anteil Blöcke [%] 200 – 630 mm	Anteil große Blöcke [%] > 630 mm	Konsistenz (überwiegend) Konsistenzzahl I _c	Plastizität Plastizitätszahl I _p [%]	Lagerungszustand Lagerungsdichte D Bzw. Undrainierte Scherfestigkeit bei bindigen Böden c _u [KN/m²]	Organischer Anteil [%]	Bodengruppe DIN18196	Baugrundschicht (ortsübliche Bezeichnung)
HBE-A1	keine An	gabe bei au Böden	fgefüllten	weich I _c ca. 0,5 – 0,75	-	locker D 0,15 – 0,45 c _{u,k} 15 – 50	0 – 5	(UM/GU*)	Auffüllungen, Schluff + Kies
HBE-B1	0	0	0	weich I _c 0,5 – 0,75	mittelplastisch I _p 20 - 30	c _{u,k} 15 – 50	3 – 6	UM/TM	Bachlehm
HBE-B2	0 – 5	<1	<1	-	•	mitteldicht D 0,45 – 0,65	<2	GU/GU*	Postglazialkies
HBE-B3	< 1	0	0	-	-	mitteldicht D 0,45 – 0,65	<1	SU*	Postglazial- sand
HBE-B4	0	0	0	weich bis steif I _c ca. 0,5 – 1,0	mittelplastisch I _p 20 - 30	c _{u,k} 30 – 80	0 – 3	UM/TM	Beckenschluff
HBE-B5	< 1	0	0	-	-	locker bis mitteldicht D 0,15 – 0,65	<1	SU*	Beckensand

2.4 Erdbebenklassifizierung

Entsprechend der "Karte der Erdbebenzonen und geologischen Untergrundklassen für Baden-Württemberg, Regierungspräsidium Freiburg, 2005" befindet sich das Untersuchungsgebiet in der **Erdbebenzone 1** (Gebiet, in der gemäß des zugrunde gelegten Gefährdungsniveaus rechnerisch die Intensität $6,5 \le I < 7$ zu erwarten ist) und der **Untergrundklasse S** (Gebiete tiefer Beckenstrukturen mit mächtigen Sedimentfüllungen).

2.5 Umwelttechnische Untersuchungen

2.5.1 Entnommene Proben und ausgeführte Untersuchungen

Aus den Untersuchungsstellen wurden Proben des Mutterbodens, der Auffüllungen, des Bachlehms und des Postglazialkieses entnommen. Bei den Oberbodenproben erfolgte die Untersuchung auf die Parameter des Wirkungspfades Boden-Mensch und der Vorsorgewerte der Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV). Die darunter folgenden Schichten (Proben MP4 bis MP7), wurden auf die Parameter der Verwaltungsvorschrift des UMBW für die Verwertung von als Abfall eingestuftem Bodenmaterial (VwV) untersucht. Die untersuchten Proben setzen sich wie folgt zusammen

<u>Tabelle 6: Entnommene Proben Umwelttechnik</u>

Probenbezeichnung	Aufschluss + Tiefe [m]	Bodenart	Bemerkung / Analytik
MP1 Mu	RKS1 0,00 – 0,40	Mutterboden	Vorsorgewerte BBodSchV + Prüfwerte WP Boden-Mensch - Fraktion < 2mm
MP2 Mu	RKS2 0,00 - 0,30	Auffüllung / Mutterboden	Vorsorgewerte BBodSchV + Prüfwerte WP Boden-Mensch - Fraktion < 2mm
MP3 Mu	RKS3 0,00 - 0,40	Mutterboden	Vorsorgewerte BBodSchV + Prüfwerte WP Boden-Mensch - Fraktion < 2mm
MP4	RKS1 0,40 – 1,40	Bachlehm	VwV Baden – Württemberg - Fraktion < 2mm
MP5	RKS2 0,30 – 1,00	Auffüllung, Schluff + Kies	VwV Baden – Württemberg - Fraktion < 2mm
MP6	RKS2 1,00 – 2,00	Postglazialkies	VwV Baden – Württemberg - Fraktion < 2mm
MP7	RKS3 0,40 – 1,50	Postglazialkies	VwV Baden – Württemberg - Fraktion < 2mm

2.5.2 Ergebnisse der Bodenproben

Die Ergebnisse der Analytik sowie die Analyseübersichten sind im Detail in den Anlagen 5.1 bis 5.3 sowie den entsprechenden Laborberichten enthalten. In der nachfolgenden Tabellen sind die Ergebnisse und Deklarationen zusammenfassend dargestellt.

<u>Tabelle 7: Einstufung der Proben MP1 Mu bis MP3 Mu nach BBodSchV, Vorsorgewerte und 70% der Vorsorgewerte (Anlage 5.1, AÜ1)</u>

	Auffälligkeiten Einzelparameter / Einstufung nach Vorsorgewerte für Böden nach Anhang 2, Abschnitt 4 BBodSchV						
Probe	Parameter	Messwert	Einheit	BBodSchV Vorsorgewert	BBodSchV 70 % Vorsorgewert		
MP1 Mu RKS1	keine Auffälligkeiten	-	-	-	-		
MP2 Mu RKS2	keine Auffälligkeiten	-	-	-	-		
MP3 Mu RKS3	keine Auffälligkeiten	-	-	-	-		

<u>Tabelle 8: Einstufung der Proben MP1 Mu bis MP3 Mu nach BBodSchV Wirkungspfad Boden – Mensch Kinderspielflächen (Anlage 5.2, AÜ2)</u>

	Auffälligkeiten Einzelparameter / Einstufung nach Wirkungspfad Boden-Mensch Nach Anhang 2, Tabelle 1.4 der BBodSchV						
Probe	Parameter	Messwert	Einheit	BBodSchV Prüfwert (Wohngebiet)			
MP1 Mu RKS1	keine Auffälligkeiten (alle Prüfwerte eingehalten)	-	-	-			
MP2 Mu RKS2	keine Auffälligkeiten (alle Prüfwerte eingehalten)	-	-	-			
MP3 Mu RKS3	keine Auffälligkeiten (alle Prüfwerte eingehalten)	-	-	-			

Tabelle 9: Einstufung der Proben nach der VwV Baden-Württemberg (Anlage 4.2)

Probe	<u>Auffälligkeiten</u> Einz Verwaltu	VwV-Einstu- fung			
11000	Parameter	Messwert	Einheit	VwV	Gesamt Einheit
MP4 RKS1, Bachlehm	keine Auffälligkeiten	-	-	Z0	Z0
MP5 RKS2, Auffüllung	keine Auffälligkeiten	-	-	Z0	Z0
MP6 RKS2, Postglazialkies	Nickel (FS)	18	mg/kg	Z0* IIIA	Z0* IIIA
MP7 RKS3, Postglazialkies	Nickel (FS)	20	mg/kg	Z0* IIIA	Z0* IIIA

⁽FS) = Feststoff

Ergebnisse

Bodenschutzrecht

Der untersuchte Oberboden weist in den Mischproben **MP1 Mu bis MP3 Mu** keine schadstoffrelevanten Belastungen auf. Die Gehalte der Stoffe liegen nach Anhang 2 Nr.4 BBodSchV alle unter den jeweiligen Vorsorgewerten. Insoweit bestehen keine Anhaltspunkte einer schädlichen Bodenveränderung auf dem Gelände. Es ist bei Bauausführung auf den siebten Teil der Bundes-Bodenschutz- und Altlastenverordnung §9 bis §12 zu achten (Vorsorge gegen das Entstehen schädlicher Bodenveränderungen).

Eine Wiederverwendung als durchwurzelbare Bodenschicht im Rahmen von Rekultivierungsmaßnahmen oder bei landwirtschaftlicher Folgenutzung ist den bisherigen Ergebnissen zufolge (3 Proben) möglich. Sollte dieser Verwertungsweg weiterverfolgt werden, sind höher auflösende Beprobungen (über Haufwerke oder Einstiche) anzuraten.

Für den <u>Wirkungspfad Boden-Mensch</u>, Kinderspielflächen, nach der BBodSchV zeigen die 3 Mischproben **MP1 Mu bis MP3 Mu keine Auffälligkeiten** bei den untersuchten Paramatern. Es wird empfohlen den Oberboden auf dem Baufeld in statisch nicht relevanten Bereichen und als Geländeangleichung wiederzuverwenden.

⁽EL) = Eluat

^{*}Eine Überschreitung dieses Parameters allein ist kein Ausschlusskriterium

Projekt Nr.: 2211024

Neubau Kinderhaus Ebenweiler

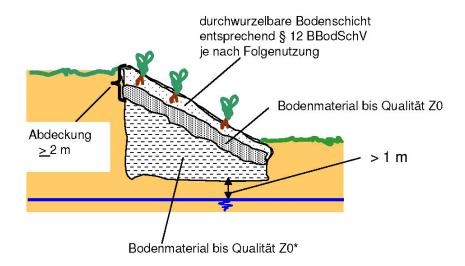
Abfallrecht

Auffüllungen:

Die Probe der Auffüllungen, **MP5**, ist unauffällig. Es wurden keine Grenzwertüberschreitungen bei den Paramatern der VwV festgestellt. Die Probe erreicht den **Z0** Zuordnungswert

Natürliche Böden:

Bei den Proben des Postglazialkieses, **MP6 und MP7** wurden sehr geringfügig erhöhte Gehalte an Nickel im Feststoff gemessen. Die Nickelgehalte sind geogen bedingt. Die beiden Proben erreichen den **Z0* IIIA** Zuordnungswert. Die


Die Probe des Bachlehms zeigt keine Auffälligkeiten. Die Probe MP1 wird als Z0 eingestuft.

Folgend werden die Verwertungsmöglichkeiten für die verschiedenen Qualitätsstufen der VwV aufgezeigt:

Z0 und Z0*:

Für die Verfüllung von Abgrabungen darf Z0-Material uneingeschränkt verwertet werden. Darüber hinaus darf auch Z0* IIIA Material verwendet werden, wenn die Sohle der Verfüllung einen Mindestabstand von 1 m zum höchsten Grundwasserstand hat und oberhalb des verfüllten Bodenmaterials eine Abdeckung aus Bodenmaterial, das die Vorsorgewerte der BBodSchV einhält, aufgebracht wird (s. Abbildung 1 unten). Ebenfalls ist es möglich Z0 bzw. Z0* Material einer höheren Verwertung (Z1.1 - Z2) zuzuführen

Abbildung 1: Z0 bzw. Z0* – Verwertung bei der Verfüllung von Abgrabungen; entnommen aus der Verwaltungsvorschrift des UMBW für die Verwertung von als Abfall eingestuftem Bodenmaterial (VwV)

Die vorliegende Untersuchung ist als indikative Untersuchung zu verstehen. Die Anzahl der entnommenen Proben entsprechen nicht den Richtlinien der LAGA PN98 für eine Deklarationsanalytik. Sofern Bodenmaterial von der Baustelle abtransportiert wird, sind, in Absprache mit der annehmenden Stelle, Haufwerk bezogene Beprobungen gemäß den Vorschriften der LAGA PN98 notwendig, so dass das Material ordnungsgemäß verwertet bzw. entsorgt werden kann.

Die gewonnenen Untersuchungsergebnisse ermöglichen erste Aussagen über die Situation an den Untersuchungspunkten gemäß den mit der Aufschlussmethode und der Analytik verbundenen Verfahren. Es kann allerdings nicht ausgeschlossen werden, dass an nicht untersuchten Stellen unerkannte Verunreinigungen vorliegen.

Bei der Haufwerks-Herstellung und Ablagerung sollte berücksichtigt werden, dass eine entsprechende Analytik einige Werktage in Anspruch nehmen kann. Die Haufwerke sollten so gelagert werden, dass sie den weiteren Baustellenablauf nicht stören. Es sind gegen das Erdreich dichte Lagerflächen einzuplanen.

3. Schicht- und Grundwasserverhältnisse, Durchlässigkeit, Versickerung

3.1 Grundwasserverhältnisse

Während den Aufschlussarbeiten am 14.12.2022 wurde in allen Sondierungen Wasser angetroffen.

Projekt Nr.: 2211024 Neubau Kinderhaus Ebenweiler

ubau Kinderhaus Ebenweiler Seite 14 von 21

Tabelle 10: Grundwasser-/ Schichtwasserstände 14.12.2022

Untersuchungs-	Wasser an	getroffen*	Wasser nach Bohrende*		Pomorkuna
punkt	m u. Gel.	m ü. NN	m u. Gel.	m ü. NN	Bemerkung
RKS1/22	1,40	590.49	1,16	590.73	Grundwasser leicht eingespannt
RKS2/22	1,15	591.00	1,15	591.00	Grundwasser frei
RKS3/22	1,12	590.83	1,12	590.83	Grundwasser frei
DPH1/22	Nicht messbar		0,90	590.79	Grundwasser vmtl. leicht eingespannt
DPH2/22	Nicht messbar		1,45	590.79	Grundwasser vmtl. frei

^{*} keine Ruhewasserspiegel!

Als Grundwasserleiter fungiert im Untersuchungsgebiet der Postglazialkies. Zum Zeitpunkt der Untersuchung lag der Grundwasserspiegel stellenweise in einem leicht eingespannten Zustand unter der Bachlehmen vor. Wir gehen davon aus, dass die gemessenen Wasserspiegel am 14.12.2022 eher untere Werte darstellen, da es seit längerer Zeit keinen Niederschlag mehr gab und die Schneeschmelze noch nicht eingesetzt hatte. Nach längeren Niederschlagsereignissen kann der Wasserspiegel erfahrungsgemäß um bis zu 1,00 m bis 1,50 ansteigen. Grundwasserganglinien über einen längeren Zeitraum liegen nicht vor. Als Bemessungswasserspiegel ist somit die Geländeoberkante anzusetzen.

3.2 Durchlässigkeit der anstehenden Böden, Versickerungsmöglichkeiten nach dem DWA-A 138 (Deutsche Vereinigung für Wasserwirtschaft, Abfall und Abwasser e. V. – Arbeitsblatt DWA-A 138 – Planung, Bau und Betrieb von Anlagen zur Versickerung von Niederschlagswasser)

Die Versickerung von Niederschlagswasser setzt einen durchlässigen Untergrund und einen ausreichenden Abstand zur Grundwasseroberfläche voraus. Der Untergrund muss die anfallenden Sickerwassermengen aufnehmen können. Die Versickerung kann direkt erfolgen oder das Wasser kann über ein ausreichend dimensioniertes Speichervolumen durch eine Sickeranlage mit verzögerter Versickerung in Trockenperioden dem Untergrund zugeführt werden.

Nach dem DWA-A 138 (April 2005) sollte der Durchlässigkeitsbeiwert des Bodens, in dem die Versickerung stattfinden soll, zwischen $k_f = 1,0 \cdot 10^{-03}$ m/s und $k_f = 1,0 \cdot 10^{-06}$ m/s liegen. Die Mächtigkeit des Sickerraumes sollte, bezogen auf den mittleren höchsten Grundwasserstand, rd. 1,0 m betragen, um eine ausreichende Filterstrecke für eingeleitete Niederschlagsabflüsse zu gewährleisten. Bei Durchlässigkeitsbeiwerten von $k_f < 1,0 \cdot 10^{-6}$ m/s ist eine Regenwasserbewirtschaftung über eine Versickerung nicht mehr gewährleistet, so dass die anfallenden Wassermengen über ein Retentionsbecken abzuleiten sind.

Um die Durchlässigkeit des oberflächennah anstehenden Postglazialkieses zu bestimmen, wurde in der Rammkernsondierung RKS3 ein Sickerversuch ausgeführt. Anhand der aufgezeichneten Absenkungen wird der <u>vertikale</u> Durchlässigkeitsbeiwert ermittelt (vgl. Anlage 3).

Der <u>vertikale</u> Durchlässigkeitsbeiwert aus dem Sickerversuch sowie der zugehörige Bemessungs – $k_{\rm f}$ – Wert nach dem Arbeitsblatt DWA - A 138, Tab. B.1, sind in nachfolgender Tabelle dargestellt:

Tabelle 11: Ergebnisse des Sickerversuches (Werte der Anlage 3)

Aufschluss Versuchstiefe Versuchsart	vertikale Durchlässigkeit k _f -Wert Feldversuch (m/s)	vertikale Durchlässigkeit k _f -Wert Bemessung (m/s)	Bodenart
RKS3/22 1,00 m Sickerversuch (Anlage 3)	1,02 • 10-4	(Korrekturfaktor 2) 2,04 • 10 ⁻⁴	Postglazialkies Kies, schwach schluffig, sandig Bodengruppe GU

Die ermittelten Durchlässigkeitsbeiwerte des Postglazialkieses stufen diesen als stark durchlässigen Boden ein (k_f = über 1 • 10⁻⁰⁴ bis 1 • 10⁻⁰² m/s).

Für die übrigen angetroffenen Schichten (gewachsene Böden) kann von folgenden Bereichen der vertikalen Durchlässigkeitsbeiwerte ausgegangen werden:

Bachlehm: $k_f = 1 \cdot 10^{-07} \text{ bis } 1 \cdot 10^{-08} \text{ m/s}$

(schwach durchlässig)

Postglazialsand: $k_f = 1 \cdot 10^{-05}$ bis $1 \cdot 10^{-07}$ m/s, je nach Feinkornanteil

(durchlässig bis schwach durchlässig)

Beckenschluff: $k_f = 1 \cdot 10^{-07} \text{ bis } 1 \cdot 10^{-9} \text{ m/s}$

(schwach durchlässig bis sehr schwach durchlässig)

Beckensand: $k_f = 1 \cdot 10^{-06} \text{ bis } 1 \cdot 10^{-07} \text{ m/s}$

(durchlässig bis schwach durchlässig)

Der Postglazialkies wäre bezogen auf seinen Durchlässigkeitsbeiwert nach dem DWA-A 138 zur direkten Versickerung geeignet. Da jedoch das Grundwasser im Baufeld hoch ansteht, wird die geforderte Filterstrecke von 1 m nicht erreicht werden.

4. Gründung und baubegleitende Maßnahmen

4.1 Gebäude und Baugrund

Von dem geplanten Umbau liegen die in der Unterlage [1] genannten Pläne vor. Der Neubau soll bereichsweise unterkellert werden (Gebäudetechnik und Lager). Die FFB EG soll bei +-0,00 = 592.12 m ü. NN zu liegen kommen. Der RFB des UG liegt bei -2,90 = 589.22 m ü. NN.

Entsprechend der Schichtdarstellung der Anlage 2 sowie nach Abschnitt 2.3 und der Tabelle 1 dieses Berichtes, steht im Untersuchungsgebiet gut tragfähiger Baugrund in Form von Postglazialkies auf folgenden Koten an:

<u>Tabelle 12:</u> Oberkante tragfähiger Baugrund bezogen auf m u. GOK; m ü. NN; FFB EG = 592.12 m ü. NN, RFB UG = 589.22

Aufschluss und Geländeoberkante	OK tragf. Baugr. [m u. GOK]	OK tragf. Baugr. [m ü. NN]	OK tragf. Baugr. bez. auf FFB EG = 592.12	OK tragf. Baugr. bez. auf RFB UG = 589.22
RKS1 591.89 m ü. NN	1,40	590.49	-1,63	+1,27
RKS2 592.15 m ü. NN	1,00	591.15	-0,97	+1,93
RKS3 591.95 m ü. NN	0,40	591.55	-0,57	+2,33
DPH1 591.69 m ü. NN	1,00	590.69	-1,43	+1,47
DPH2 592.24 m ü. NN	0,90	591.34	-0,78	+2,12

Oberhalb des Postglazialkieses liegen gering tragfähige Bachlehme und Auffüllungen

Ebenweiler liegt in der Frosteinwirkungszone II, als frostsichere Einbindetiefe ist t_{min} = 1,00 m anzusetzen.

4.2 Gründung

Die Gebäudelasten sind, um einheitliche Gründungsverhältnisse zu schaffen und Differenzsetzungen zu vermeiden, einheitlich in die tragfähigen Postglazialkieses einzuleiten.

Nicht unterkellerter Gebäudeteil

Der nicht unterkellerte Teil kann auf Einzel- und / oder Streifenfundamente oder einer elastisch gebetteten Bodenplatte gegründet werden.

Projekt Nr.: 2211024

Neubau Kinderhaus Ebenweiler

Bodenplatte

Wird der nicht unterkellerte Teil auf einer elastische gebetteten Bodenplatt gegründet, so sind die Auffüllungen und die Bachlehme bis auf den Postglazialkies auszuheben und durch einen Bodenersatzkörper zu ersetzen. Für den Bodenersatzkörper ist ein gut verdichtbares Kies-Sand Gemisch oder gebrochenes Material (Schotter) zu verwenden (Feinkornanteil < 5%). Der Aufbau und die Verdichtung des Bodenaufbaus hat lagenweise zu erfolgen (D_{Lage} = 25 - 30 cm). Bei hohen Grundwasserständen kann es notwendig sein, eine begleitende vorauseilende Grundwasserhaltung vorzuhalten. Ist die Aushubsohle im Bereich der Postglazialkies durch Wasser aufgeweicht, so ist zunächst eine Grobkornlage (Wacken / Schroppen) einzuwalken um darauf arbeiten zu können.

Der ordnungsgemäße Einbau ist anhand von statischen Plattendruckversuchen nachzuweisen (OK Planum: $E_{v2} \ge 100 \text{ MN/m}^2$, $E_{v2} / E_{v1} \le 2,3$).

Wird das Gebäude auf einer elastisch gebetteten Bodenplatte im Postglazialkies über einen Bodenersatzkörper gegründet, so kann zu Vorbemessung mit einem Bettungsmodul in der Größenordnung von \mathbf{k}_s = 12 – 14 MN/m³ gerechnet werden. Der exakte Bettungsmodulverlauf kann nach Angabe der einwirkenden Lasten, über den Steifemodul des Bodens, anhand einer detaillierten Setzungsberechnung von unserem Büro bestimmt werden.

Fundamente

Wird der nicht unterkellerte Gebäudeteil auf Fundamenten gegründet, so sind diese lokal mit Magerbeton bis auf die tragfähigen Kiese zu führen (z. B. RKS1). Der Einfluss der Fundamentlasten im Bereich der Kellerwände ist durch den Tragwerkplaner zu berücksichtigen. Gegebenenfalls ist es notwendig, die Fundamente hier tiefer zu führen um die den Einfluss auf die Wände zu verringern. Dies hat dann aufgrund des anstehenden Grundwassers im Schutz von Brunnenringen oder Stahlrohren zu geschehen.

In den Anlagen 4.1 bis 4.2 sind Fundamentdiagramme für die Vorbemessung von Einzel- und Streifenfundamenten enthalten, welche in den Postglazialkiesen gründen. Für die Vorbemessung kreisrunder Brunnengründungen sind die Spannungen für die flächengleichen, quadratischen Einzelfundamente anzusetzen (s. u.).

Berechnungsgrundlage sind die DIN EN 1997-2009-09 (EC7) mit nationalem Anhang (DIN EN 1997-1/NA:2010-12), die DIN 1054:2010-12 sowie die DIN 4017:2006-03. Es liegt der Lastfall BS-P (ständige Bemessungssituation) zugrunde und das Verhältnis von veränderlichen zu Gesamtlasten wurde mit 0,50 vorausgesetzt. Als Einbindetiefe zur Gültigkeit der Diagramme wird mindestens t = 1,0 m vorausgesetzt.

Der Bemessungswert des Sohlwiderstandes $\sigma_{R,d}$ ist in den oben genannten Anlagen in Abhängigkeit von der Fundamentgeometrie und für eine mittige Belastung dargestellt.

(Anmerkung: Im rechten Bereich der Diagramme und den Tabellen ist zusätzlich noch der Wert $\sigma_{E,k}$ angegeben. Dieser Wert entspricht dem aufnehmbaren Sohldruck nach der DIN 1054:2005-01).

Bei einem Ausnutzungsgrad von $\mu \le 1,0$ und einer Begrenzung der rechnerischen Setzung auf z. B. s $\le 1,5$ cm (die Setzungen werden in der Berechnung über die charakteristischen Lasten ermittelt) ist, je nach gewählter Fundamentgeometrie, folgender Bemessungswert des Sohlwiderstandes anzusetzen (Auszüge aus den Anlagen 4.1 bis 4.2):

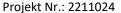
Anlage 4.1 – quadratisches Einzelfundament (a / b = 1) – Einbindetiefe = 1,00 m

```
Fundament a x b = 0,80 x 0,80 m: \sigma_{R,d} = 773 kN/m², R_{n,d} = 494 kN, z_{ugh.}s = 0,69 cm Fundament a x b = 1,20 x 1,20 m: \sigma_{R,d} = 822 kN/m², R_{n,d} = 1183 kN, z_{ugh.}s = 1,27 cm Fundament a x b = 1,60 x 1,60 m: \sigma_{R,d} = 660 kN/m², R_{n,d} = 1689 kN, z_{ugh.}s = 1,50 cm.
```

Anlage 4.2 – Streifenfundament I = 15 m – Einbindetiefe = 1,00 m

```
Fundament b = 0,40 m, I = 15 m: \sigma_{R,d} = 505 kN/m², R_{n,d} = 202 kN/m, z_{ugh.}s = 0,76 cm Fundament b = 0,60 m, I = 15 m: \sigma_{R,d} = 543 kN/m², R_{n,d} = 325 kN/m, z_{ugh.}s = 1,36 cm Fundament b = 0,80 m, I = 15 m: \sigma_{R,d} = 450 kN/m², R_{n,d} = 360 kN/m, z_{ugh.}s = 1,50 cm.
```

<u>Achtung:</u> Die angegeben Werte ($\sigma_{R,d}$) sind Bemessungswerte des Sohlwiderstands, keine aufnehmbaren Sohldrücke nach DIN 1054:2005-01 und keine zulässigen Bodenpressungen nach DIN 1054:1976-11.


Je nach gewählter Fundamentgeometrie ist entweder die Grundbruchsicherheit (rote Linie im Diagramm) oder die Begrenzung der Setzungen (hier 1,50 cm gewählt - blaue Linie im Diagramm) maßgebend für den aufnehmbaren Sohldruck.

Die Größe der zulässigen Setzungen ist vom zuständigen Planungsbüro festzulegen.

Bei den angegebenen Tragfähigkeitswerten sind die gegenseitige Beeinflussung von benachbarten Fundamenten sowie das Fundamenteigengewicht noch nicht berücksichtigt. Es wird vorgeschlagen, die Vorbemessung der Fundamente nach den Fundamentdiagrammen in den Anlagen 4.1 bis 4.2 vorzunehmen. Bei schräger oder ausmittiger Belastung sind die Bemessungswerte nicht auf die Fläche A (a x b), sondern auf die Ersatzfläche A' (a' x b') anzusetzen.

Anmerkung: nach EC7, 6.5.2.2, mit ergänzender Regelung A(1) aus der DIN1054:2010, sind die Exzentrizität und die Lastneigung aus den charakteristischen Lasten zu ermitteln.

Nach Vorlage der aktuellen Bauwerkslasten sind bei setzungsempfindlichen Tragkonstruktionen die gegenseitigen Beeinflussungen der Fundamente und die Verträglichkeit der Setzungsdifferenzen bzw. Fundamentverdrehungen mit einer Setzungsberechnung zu überprüfen.

Neubau Kinderhaus Ebenweiler

Zur Bestimmung des Bemessungswerts des Sohlwiderstandes bzw. der auftretenden Setzung für andere Fundamentabmessungen als in den Diagrammen angegeben, ist Kontakt mit dem Unterzeichner aufzunehmen.

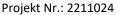
Wird die nur durch ihr Eigengewicht und Verkehr belastete Bodenplatte frei zwischen den Fundamenten gespannt, sind keine baugrundverbesserten Maßnahmen erforderlich. Ansonsten ist wie folgt vorzugehen:

Unterhalb der Bodenplatte ist ein Bodenersatzkörper mit einer Stärke von mindestens 40 cm aufzubauen. Für den Aufbau unter der Bodenplatte ist ein gut verdichtbares Kies-Sand Gemisch oder gebrochenes Material (Schotter) zu verwenden (Feinkornanteil < 5%). Der Aufbau und die Verdichtung des Bodenaufbaus hat lagenweise zu erfolgen ($D_{Lage} = 25 - 30$ cm). Zwischen dem Untergrund und dem Aufbaukörper ist ein Geotextil zu verlegen (GRK3 bei Kies-Sand, GRK4 bei Schotter)

Der ordnungsgemäße Einbau ist anhand von statischen Plattendruckversuchen nachzuweisen (OK Planum: $E_{v2} \ge 80 \text{ MN/m}^2$, $E_{v2} / E_{v1} \le 2,3$).

Unterkellerter Gebäudeteil

Der unterkellerte Gebäudeteil kommt den Aufschlüssen zu folge bereits in den tragfähigen Postglazialkiesen zu liegen. Es wird vorgeschlagen, das Untergeschoss auf einer elastisch gebetteten Bodenplatte zu gründen. Hierzu ist die Baugrube trocken zu halten (s. Abschnitt 4.3). Eine Gründung auf Fundamenten scheint mit Hinweis auf die nötige wasserundurchlässige Bauweise und des notwendigerweise größeren Absenkziels bei einer offenen Wasserhaltung nicht sinnvoll.


Wird das Untergeschoss auf einer elastisch gebetteten Bodenplatte im Postglazialkies gegründet, so kann zu Vorbemessung mit einem Bettungsmodul in der Größenordnung von \mathbf{k}_s = 12 – 14 MN/m³ gerechnet werden. Der exakte Bettungsmodulverlauf kann nach Angabe der einwirkenden Lasten, über den Steifemodul des Bodens, anhand einer detaillierten Setzungsberechnung von unserem Büro bestimmt werden.

4.3 Baugruben

Der Neubau wird teilweise unterkellert. Es wird eine bis zu 3,50 m tiefe Baugrube notwendig.

Eine frei geböschte Baugrube ist im Grundwasserbereich ohne zusätzliche technische Maßnahmen nicht möglich.

Soll die Baugrube frei geböscht hergestellt werden, ist eine genehmigungspflichtige, vorauseilende Grundwasserabsenkung über z. B. Schachtbrunnen notwendig. Die vorauseilende Grundwasserabsenkung ist rechnerisch nachzuweisen. Der Einfluss der Absenkung auf angrenzenden Gebäude ist in diesem Zug ebenfalls zu untersuchen. Im permanent abgesenkten Zustand (Bauphase) sind dann frei geböschte Baugruben mit einem Böschungswinkel von 45° möglich. Auf Grund der lokal sehr hohen Durchlässigkeiten des Postglazialkieses und dem zu

Neubau Kinderhaus Ebenweiler

erwartenden hohen Wasserandrang sind <u>sehr hohe Entnahmemengen über mehrere zu dimensionierende Absenkbrunnen zu erwarten.</u> <u>Bei dieser Grundwasserabsenkung besteht ein technisches Ausführungsrisiko</u> (Pumpenausfall, Unterdimensionierung der Pumpen etc.).

Die Dimensionierung der Grundwasserhaltung sowie der wasserrechtliche Antrag kann von unserem Büro erstellt werden.

Als Alternative zu einer freien Böschung in Kombination mit einer vorauseilenden Grundwasserabsenkung, kann die Grube auch im <u>Schutz eines wasserabsperrenden Verbaus</u> ausgehoben werden. Hierzu eignet sich zum Beispiel ein Spundwandverbau. Der Verbaus muss bis in den Grundwasserstauer reichen (hier Grundmoräne), dieser wurde mit den Endtiefen der Sondierungen nicht erreicht. Zur Erkundung der Tiefenlage sind großkalibrige Bohrungen notwendig. Nach dem einmaligen Lenzen der Baugrube sind lediglich die Restwassermengen aus den Spundwandschlössern sowie Niederschlagswasser abzuleiten.

Die Standsicherheit der Verbaumaßnahme ist rechnerisch nachzuweisen. Je nach statischen Erfordernissen kann es notwendig sein die Spundwand rückzuverankern. Verankerungen welche in ein Nachbargrundstück hinein reichen bedürfen der Erlaubnis des jeweiligen Grundstückseigentümers.

4.4 Bauwerksabdichtung

Im Projektgebiet wurde Grundwasser angetroffen.

Bodenplatten und erdberührte Wände unterhalb des Bemessungswasserspiegels (hier Geländeoberkante, s. Abschnitt 3.1) sind gemäß Abschnitt 8.6.2 der DIN 18533-1 gegen von außen drückendem Wasser auszuführen (Wassereinwirkungsklasse W2.2E) oder in wasserundurchlässiger Bauweise aus Beton herzustellen (Weiße Wanne). Es ist die Beanspruchungsklasse 1 gemäß der WU Richtlinie anzusetzen (ständig und zweitweise drückendes Wasser).

4.5 Straßenbaumaßnahmen

Es ist davon auszugehen, dass die Erschließungsstraßen und Parkflächen oberflächennah in den Auffüllungen bzw. den Bachlehmen zu liegen kommen. Diese Böden sind nach den ZTV E-StB 17 als sehr frostempfindlich (F3) einzustufen. Des Weiteren sind diese Böden sehr witterungsempfindlich. Nach den ZTV E-StB 17 und der RStO ist auf dem Erdplanum eines F3 Untergrundes ein Verformungsmodul von $E_{v2} \ge 45$ MN/m² gefordert. Dieser Wert wird im Bereich der weichen Bachlehme und der Auffüllungen nicht erreicht werden. Es wird empfohlen, den Verformungsmodul des Erdplanums vor der Baumaßnahme durch Plattendruckversuche zu untersuchen. Sollte das Erdplanum den geforderten Verformungsmodul nicht erreichen, sind baugrundverbessernde Maßnahmen notwendig.

Liegt das Erdplanum in den Auffüllungen oder den Bachlehmen, wird vorgeschlagen, den frostsicheren Straßenaufbau auf einem mindestens 0,25 m starken Bodenersatzkörper aus einem feinkornarmen Kies-Sand-Gemisch oder Schotter aufzubauen. Der Bodenersatzkörper ist lagenweise einzubauen und zu verdichten. Zwischen dem Untergrund und dem Teilbodenersatzkörper ist ein Geotextil zu verlegen (GRK3 bei Kies-Sand, GRK4 bei Schotter). Der

Projekt Nr.: 2211024

Neubau Kinderhaus Ebenweiler

fachgerechte Einbau des Bodenersatzkörpers ist anhand von Plattendruckversuchen zu überprüfen.

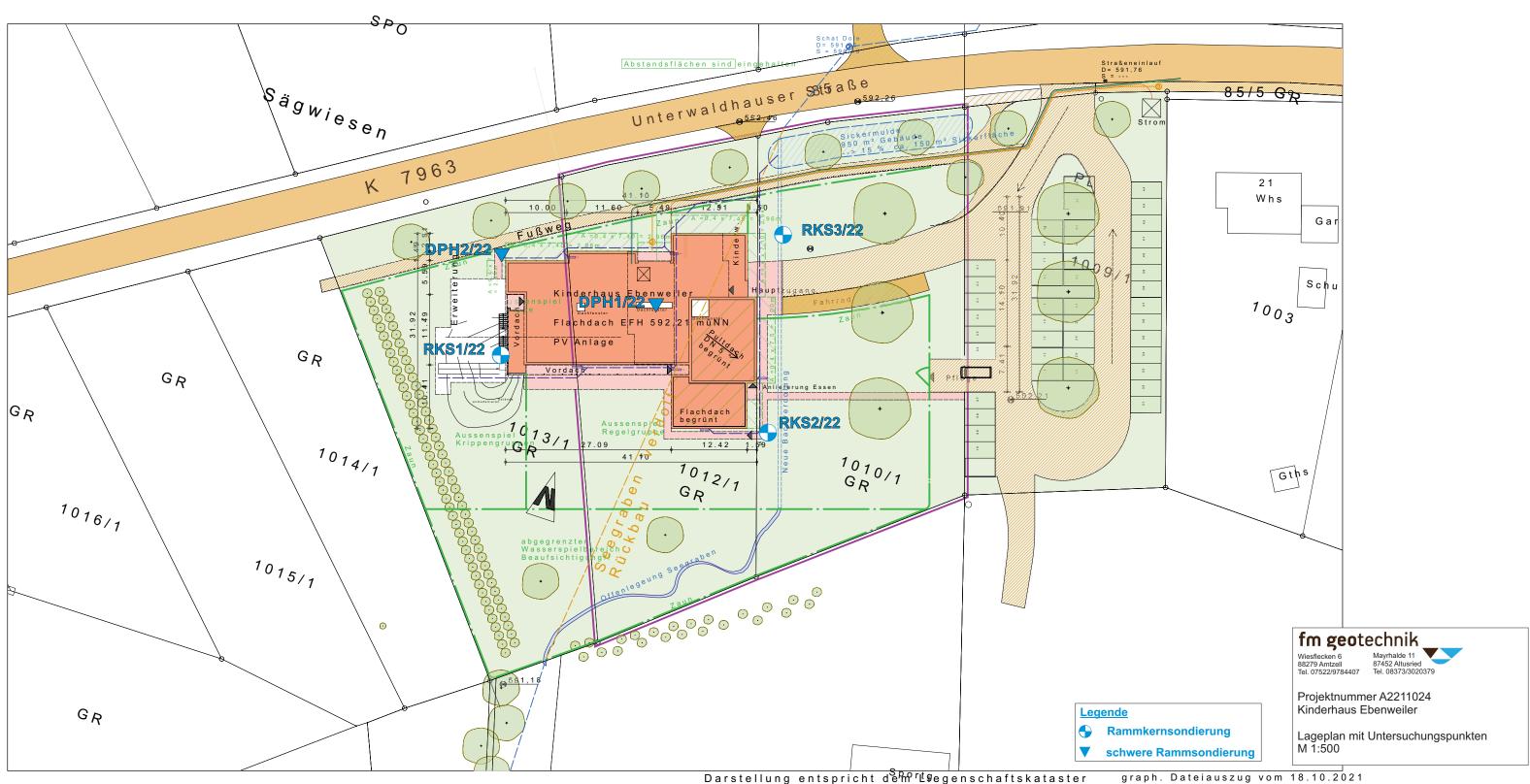
Liegt das Erdplanum bereits in den Postglazialkiesen (z. B. RKS3) sind keine baugrundverbessernden Maßnahmen notwendig.

Anmerkungen

Die im Bericht enthaltenen Angaben beziehen sich auf die bei den Untersuchungsstellen ermittelten Bodenschichten und deren geotechnischen Eigenschaften. Abweichungen von den gemachten Angaben (Schichttiefen, Bodenzusammensetzung, Wasserstände etc.) können auf Grund einer Heterogenität des Untergrundes nicht ausgeschlossen werden. Ferner ist eine sorgfältige Überwachung der Erdarbeiten und eine laufende Überprüfung der angetroffenen Bodenverhältnisse im Vergleich zu den Untersuchungsergebnissen und Folgerungen erforderlich.

Der Bericht ist nur zusammen mit allen Anlagen gültig (Anlage 1.1 bis Anlage 6). Eine auszugsweise Weitergabe ist nicht gestattet. Die Vervielfältigung des Gutachtens bedarf der Zustimmung des auf Seite 1 genannten Auftraggebers.

Für ergänzende Erläuterungen sowie zur Klärung der im Verlauf der weiteren Planung und Ausführung noch offenen Fragen stehen wir Ihnen gerne zur Verfügung.


Dipl. Ing. (FH) R. Frankovsky

A2211024 - Neubau Kinderhaus Ebenweiler Anlage 1.1 - Übersichtsplan

Maßstab 1:500

Darstellung entspricht den rtgegenschaftskataster und ist nach §4 LBO VVO ausgearbeitet:

Staig, 15.12.2022

Lageplanfertiger: Helmut Schwegler

graph. Dateiauszug vom 18.10.2021 (c) staatliche Vermessungsverwaltung Baden-Württemberg

Abweichungen gegenüber dem Grundbuch sind möglich! Hinsichtlich etwa vorhandener unterirdischer Leitungen wird keine Gewähr übernommen

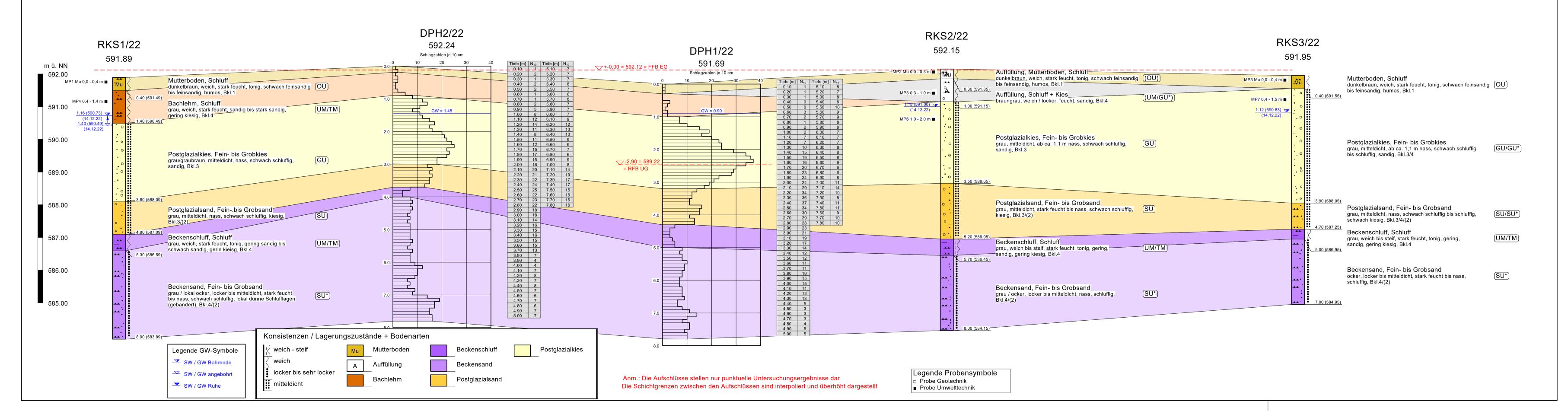
Ingenieur- und Planungsgesellschaft mbH Schenkenwaldstraße 30 88273 Fronreute - Staig

Geologisches Profil: RKS1 - DPH2 - DPH1 - RKS2 - RKS3

fm geotechnik

Wiesflecken 6
88279 Amtzell

Wayrhalde 11
87452 Altusried


Projekt

Neubau Kinderhaus Ebenweiler

2
Projekt Nr.
2211024

Geologisches Profil: RKS1 - DPH2 - DPH1 - RKS2 - RKS3

M. d. H. 1:50, M. d. L. unmaßstäblich

Projekt Nr.: A2211024

Anlage: 3

Absenkversuch im Bohrloch, Einleitung über GW-Spiegel

gemäß Insitiut für Bau und Umwelt IBU, Hochschule Rapperstwill HSR

Neubau Kinderhaus Ebenweiler

Aufschluss: RKS3/22

Sickerversuch Nr.:

<u>1</u>

Eingangsparameter:	
Rohrdurchmesser d [m]:	0,025
OK Rohr [m ü. GOK]:	1,00
UK Rohr [m u. GOK]:	1,00
Rohrlänge gesamt [m]:	2,00
Bohrlochtiefe [m u. GOK]:	1,00
freie Bohrlochstrecke L [m]:	0,00
GW-Spiegel [m u. GOK]:	1,12
WSP u. OK Rohr	0,20
Versuchsbeginn [m]	0,20
WSP ü. UK Rohr	1,80
Versuchsbeginn [m]	1,00

Bodenart: Postglazialkies Versuchsdatum: 14.12.2022

OK Rohr

Ah

h

h

h

UK Rohr

Bohrlochtiefe

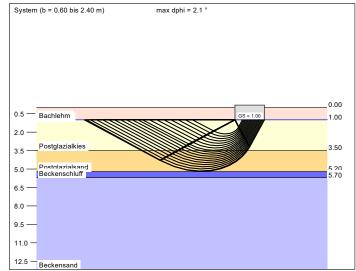
GW-Spiegel

Durchlässigkeitsbeiwert k_f [m/s]:

$$k_f = C \times \frac{1}{h_m} \times \frac{\Delta h}{\Delta t}$$

mit C [m] bei Einleitung über GW-Spiegel:

$$C = \frac{d^2}{4 \times (d + \frac{L}{3})}$$
C = 6,250E-03 m


Versuchsparameter:

t [sec]	Δt [sec]	WSP u. OK Rohr [m]	Wassersäule h[m]	h _m [m]	Δh [m]	k _f [m/s]
0	0,00	0,20	1,80			
	•	•	,	1,14	1,32	1,21E-04
60	60,00	1,52	0,48			
100	400.00	4.00	0.40	0,99	1,62	8,52E-05
120	120,00	1,82	0,18	0,90	1,80	1,00E-04
125	125,00	2,00	0,00	0,90	1,00	1,002-04
-	-,	,	-,			
				Mittelwert I	Feldersuch k _f :	1,02E-04

Bemessungswert nach DWA A-138 (Faktor 2) k: 2,04E-04

Fundamentdiagramm Einzelfundament, Gründung in den Postglazialkiesen Einbindetiefe t min = 1,0 m

Boden	Tiefe [m]	γ [kN/m³]	γ' [kN/m³]	φ [°]	c [kN/m²]	E _s [MN/m²]	v [-]	Bezeichnung
	1.00	18.0	8.0	25.0	0.0	2.0	0.00	Bachlehm
	3.50	21.0	11.0	35.0	0.0	50.0	0.00	Postglazialkies
	5.20	19.0	9.0	32.5	0.0	30.0	0.00	Postglazialsand
	5.70	18.0	8.0	25.0	1.0	8.0	0.00	Beckenschluff
	>5.70	19.0	9.0	30.0	0.0	10.0	0.00	Beckensand

a [m]	b [m]	σ _{R,d} [kN/m²]	R _{n,d} [kN]	zul _G / _{GE,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ ₀ [kN/m²]	t _g [m]
0.60	0.60	748.3	269.4	525.1	0.49	35.0	0.00	11.00	18.00	3.95
0.70	0.70	760.7	372.7	533.8	0.58	35.0	0.00	11.00	18.00	4.35
0.80	0.80	773.1	494.8	542.6	0.69	35.0	0.00	11.00	18.00	4.73
0.90	0.90	785.6	636.3	551.3	0.79	35.0	0.00	11.00	18.00	5.11
1.00	1.00	798.0	798.0	560.0	0.94	35.0	0.00	11.00	18.00	5.48
1.10	1.10	810.5	980.6	568.7	1.10	35.0	0.00	11.00	18.00	5.85
1.20	1.20	822.9	1185.0	577.5	1.27	35.0	0.00	11.00	18.00	6.20
1.30	1.30	835.3	1411.7	586.2	1.46	35.0	0.00	11.00	18.00	6.55
1.40	1.40	799.1	1566.3	560.8	1.54	34.6	0.00	10.98	18.00	6.76
1.50	1.50	786.1	1768.7	551.6	1.67	34.4	0.00	10.93	18.00	7.02
1.60	1.60	780.7	1998.7	547.9	1.83	34.2	0.00	10.88	18.00	7.29
1.70	1.70	777.4	2246.8	545.6	1.99	34.1	0.00	10.82	18.00	7.56
1.80	1.80	776.9	2517.0	545.2	2.17	34.0	0.00	10.76	18.00	7.83
1.90	1.90	777.6	2807.2	545.7	2.36	33.9	0.00	10.71	18.00	8.10
2.00	2.00	778.8	3115.3	546.5	2.55	33.9	0.00	10.66	18.00	8.37
2.10	2.10	780.8	3443.3	547.9	2.76	33.8	0.00	10.60	18.00	8.64
2.20	2.20	783.2	3790.6	549.6	2.97	33.7	0.00	10.55	18.00	8.91
2.30	2.30	780.9	4130.8	548.0	3.17	33.6 *	0.00	10.51	18.00	9.15
2.40	2.40	696.4	4011.6	488.7	2.95	32.7 *	0.00	10.50	18.00	9.04

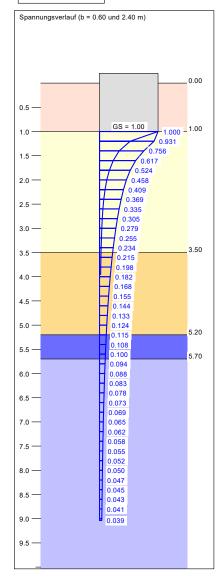
^{*} phi wegen 5° Bedingung abgemindert

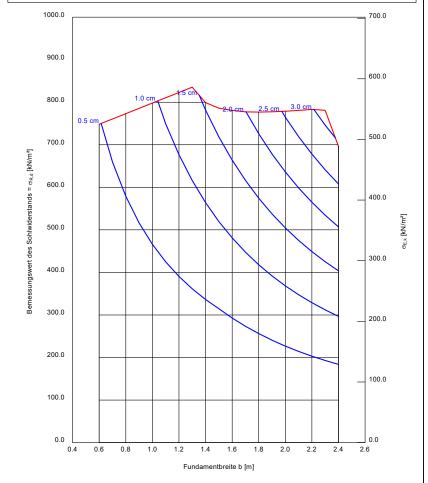
zul $\sigma = \sigma_{E,k} = \sigma_{0f,k} / (\gamma_{R,v} \cdot \gamma_{(G,Q)}) = \sigma_{0f,k} / (1.40 \cdot 1.43) = \sigma_{0f,k} / 1.99$ (für Setzungen)

Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.50

fm geotechnik Wiesflecken 6 Mayrhalde 11

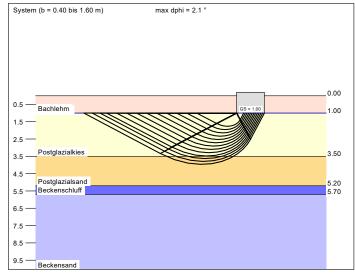
Grenztiefe mit p = 20.0 %


Neubau Kinderhaus Ebenweiler


Anlage 4.1

Projekt Nr.

A2211024


Einzelfundament

Fundamentdiagramm Streifenfundament, Gründung in den Postglazialkiesen Einbindetiefe t min = 1,0 m

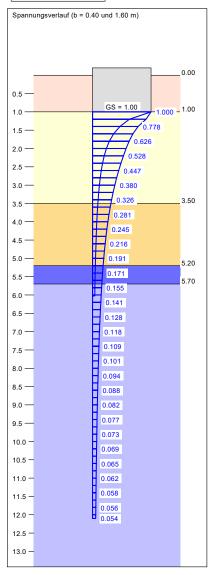
Boden	Tiefe [m]	γ [kN/m³]	γ' [kN/m³]	φ [°]	c [kN/m²]	E _s [MN/m²]	v [-]	Bezeichnung
	1.00	18.0	8.0	25.0	0.0	2.0	0.00	Bachlehm
	3.50	21.0	11.0	35.0	0.0	50.0	0.00	Postglazialkies
	5.20	19.0	9.0	32.5	0.0	30.0	0.00	Postglazialsand
	5.70	18.0	8.0	25.0	1.0	8.0	0.00	Beckenschluff
	>5.70	19.0	9.0	30.0	0.0	10.0	0.00	Beckensand

a [m]	b [m]	σ _{R,d} [kN/m²]	R _{n,d} [kN/m]	zul σ/σ _{E,k} [kN/m²]	s [cm]	cal φ [°]	cal c [kN/m²]	γ ₂ [kN/m³]	σ ₀ [kN/m²]	t _g [m]
15.00	0.40	505.1	202.1	354.5	0.76	35.0	0.00	11.00	18.00	6.02
15.00	0.50	524.2	262.1	367.9	1.05	35.0	0.00	11.00	18.00	6.73
15.00	0.60	543.2	325.9	381.2	1.36	35.0	0.00	11.00	18.00	7.39
15.00	0.70	562.2	393.5	394.5	1.70	35.0	0.00	11.00	18.00	8.01
15.00	0.80	581.1	464.8	407.8	2.07	35.0	0.00	11.00	18.00	8.60
15.00	0.90	599.9	539.9	421.0	2.46	35.0	0.00	11.00	18.00	9.17
15.00	1.00	618.6	618.6	434.1	2.87	35.0	0.00	11.00	18.00	9.72
15.00	1.10	637.2	701.0	447.2	3.30	35.0	0.00	11.00	18.00	10.25
15.00	1.20	655.8	787.0	460.2	3.76	35.0	0.00	11.00	18.00	10.76
15.00	1.30	674.4	876.7	473.2	4.24	35.0	0.00	11.00	18.00	11.26
15.00	1.40	653.0	914.3	458.3	4.40	34.6	0.00	10.98	18.00	11.46
15.00	1.50	649.5	974.2	455.8	4.69	34.4	0.00	10.93	18.00	11.76
15.00	1.60	651.6	1042.6	457.3	5.03	34.2	0.00	10.88	18.00	12.10

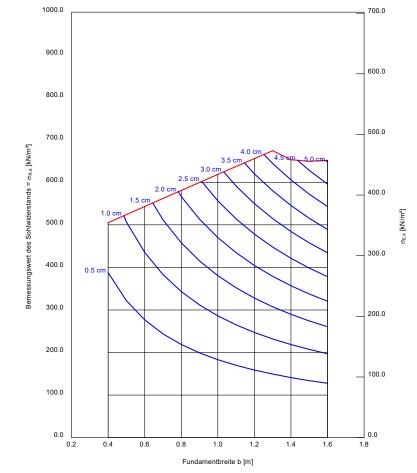
 $zuI_{~G}=\sigma_{E,k}=\sigma_{0f,k}~/~(\gamma_{R,v}\cdot\gamma_{(G,Q)})=\sigma_{0f,k}~/~(1.40\cdot1.43)=\sigma_{0f,k}~/~1.99~~(für~Setzungen)$ Verhältnis Veränderliche(Q)/Gesamtlasten(G+Q) [-] = 0.50

fm geotechnik Wiesflecken 6 88279 Amtzell 87452 Altusried

Grenztiefe mit p = 20.0 %


Neubau Kinderhaus Ebenweiler

Anlage 4.2


Projekt Nr.

A2211024

Streifenfundament

Berechnungsgrundlagen: Grundbruchformel nach DIN 4017:2006 Teilsicherheitskonzept (EC 7) Streifenfundament (a = 15.00 m) $\gamma_{R,v} = 1.40 \\ \gamma_G = 1.35 \\ \gamma_G = 1.50 \\ \text{Anteil Veränderliche Lasten} = 0.500 \\ \gamma_{(G,Q)} = 0.500 \cdot \gamma_Q + (1 - 0.500) \cdot \gamma_G \\ \gamma_{(G,Q)} = 1.425 \\ \text{Gründungssohle} = 1.00 \text{ m}$

Bewertung von Bodenmischproben nach dem BBodSchG §8, Abs. 2, Nr. 1 (Vorsorgewerte)

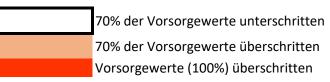
(Vorsorgewerte nach Anhang 2, Tabellen 4.1 und 4.2 der BBodSchV)

(Die hier vorgelegten chemischen Befunde und Einstufungen sind nur mit den dazugehörigen

Originalbefunden des Analytik-Labors gültig)

Prüfbericht Nr. Agrolab GmbH: 3370843 ff.

Projekt Nr. A2211024
Neubau Kinderhaus Ebenweiler
Anlage 5.1


AÜ1 - Vorsorgewerte BBodSchV

Analytik			Vorsorgewe	rte (in Klamme	r 70% der Vorsorgewer	te)		Probe	e Nr. / Aufschluss / Bod	enart	
Parameter	Dimension	Metalle	nach Tab. 4.1 BB	odSchV	organische Stoffe r	n. Tab 4.2 BBodSchV	MP1 Mu RKS1 0,0 - 0,4 m	MP2 Mu RKS2 0,0 - 0,3 m	MP3 Mu RKS3 0,0 - 0,40 m		
							Schluff	Schluff	Schluff		
pH-Wert							6,9	7,3	7,6		
Humusgehalt	%						4	7	7		
<u>Metalle</u>		Ton	Lehm / Schluff	Sand							
Blei ²⁾	mg/kg	100 (70)	70 (49)	40 (28)			23	15	18		
Cadmium ¹⁾	mg/kg	1,5 (1,1)	1 (0,7)	0,4 (0,3)			0,3	<0,2	0,2		
Chrom	mg/kg	100 (70)	60 (42)	30 (21)			39	28	39		
Kupfer	mg/kg	60 (42)	40 (28)	20 (14)			18	9	19		
Nickel 1)	mg/kg	70 (49)	50 (35)	15 (10,5)			22	20	27		
Quecksilber	mg/kg	1 (0,7)	0,5 (0,35)	0,1 (0,07)			0,13	0,08	0,11		
Zink ¹⁾	mg/kg	200 (140)	150 (105)	60 (42)			58,8	43,1	60,6		
organische Stof	<u>ffe</u>				Humusgehalt > 8%	Humusgehalt <= 8%					
∑ PAK ₁₆ n. EPA	mg/kg				10 (7)	3 (2,1)	u.n.	u.n.	u.n.		
Benzo(a)pyren	mg/kg				1 (0,7)	0,3 (0,2)	<0,05	<0,05	<0,05		
∑ PCB ₆	mg/kg				0,1 (0,07)	0,05 (0,035)	u.n.	u.n.	u.n.		

"<" Zeichen oder u.n. = unter Nachweisgrenze

n.u. = nicht untersucht

stark schluffige Sande sind nach Anhang 2, Abs. 4.3 der BBodSchV entsprechend der Bodenart Lehm/Schluff zu bewerten

¹⁾ Bei Böden der Bodenart Lehm/Schluff mit einem pH-Wert < 6,0 gelten für Cadmium, Nickel und Zink die Vorsorgewerte der Bodenart Sand

²⁾ bei einem pH-Wert < 5,0 gilt für Blei der Vorsorgewert für Sand

Bewertung von Bodenmischproben nach dem BBodSchG §8, Abs. 1 Satz 2 Nr. 1 Prüfwerte nach Anhang 2, Tabelle 1.4 der BBodSchV, Wirkungspfad Boden - Mensch

(Die hier vorgelegten chemischen Befunde und Einstufungen sind nur mit den dazugehörigen Originalbefunden des Analytik-Labors gültig)

Projekt Nr. A2211024

Neubau Kinderhaus Ebenweiler

Anlage 5.2

AÜ2 - BBodSchV Wirkungspfad Boden - Mensch

Prüfbericht Nr. Agrolab GmbH: 3370843 ff.

			Prüfwerte (Anhang 2	, Tab. 1.4, BBodSchV)			Probe I	Nr. / Aufschluss / Prüfv	wert für	
Analy	ytik		Wirkungspfad Boden - N	Mensch (direkter Kontakt)		MP1 Mu	MP2 Mu	MP3 Mu		
Parameter	Dimension	Kinderspielflächen	Wohngebiete	Park- und Freizeitanlagen	Industrie- und Gewerbegrundstücke	RKS1 0,0 - 0,4 m Kinderspieflächen	RKS2 0,0 - 0,3 m Kinderspieflächen	RKS3 0,0 - 0,40 m Kinderspieflächen		
		F0			-		-			
Cyanide	mg/kg	50	50	50	100	4	1,4	0,7		
Arsen	mg/kg	25	50	125	140	15,0	15,0	10,0		
Blei	mg/kg	200	400	1000	2000	23	15	18		
Cadmium	mg/kg	10 (2,0) ¹⁾	20 (2,0) ¹⁾	50	60	0,3	<0,2	0,2		
Chrom	mg/kg	200	400	1000	1000	18	28	39		
Nickel	mg/kg	70	140	350	900	22	20	27		
Quecksilber	mg/kg	10	20	50	80	0,13	0,08	0,11		
Benzo(a)pyren	mg/kg	2	4	10	12	<0,05	<0,05	<0,05		
Hexachlorbenzol	mg/kg	4	8	20	200	<0,1	<0,1	<0,1		
Pentachlorphenol	mg/kg	50	100	250	250	<0,1	<0,1	<0,1		
∑ PCB ₆ 2)	mg/kg	0,4	0,8	2	40	u.n.	u.n.	u.n.		
DDT	mg/kg	40	80	200	-	u.n.	u.n.	u.n.		
Hexachlorhcyclohexa (HCH-Gemisch oder Beta-HCH	n mg/kg	5	10	25	400	u.n.	u.n.	u.n.		
Aldrin	mg/kg	2	4	10	-	<0,05	<0,05	<0,05		

¹⁾ In Haus- und Kleingärten, die sowohl als Aufenthaltsbereich für Kinder als auch für den Anbau von Nahrungspflanzen genutzt werden, ist für Cadmium der Wert von 2,0 mg/kg als Prüfwert anzuwenden

grün = Prüfwert eingehalten oder gleich

"<" Zeichen oder u.n. = unter Nachweisgrenze

rot = Prüfwert überschritten

²⁾ Sofern PCB-Gesamtgehalte bestimmt werden, sind die ermittelten Meßwerte durch den Faktor 5 zu dividieren

Bewertung von Bodenmischproben nach der Verwaltungsvorschrift des UMBW

(für die Verwertung von als Abfall eingestuftem Bodenmaterial, vom 14.03.2007 mit Berichtigung vom 29.12.2017)

(Die hier vorgelegten chemischen Befunde und Einstufungen sind nur mit den dazugehörigen

Originalbefunden des Analytik-Labors gültig)

Prüfbericht Nr. Agrolab GmbH: 3370847 ff.

fm geotechnik

Projekt Nr. A2211024 Neubau Kinderhaus Ebenweiler

Anlage 5.3 AÜ3 - VwV

Analytik					Zuo	rdnungswerte					F	robe / Aufschluss / Tief	e	
			Z0		Z0*	Z0*	Z1.1	Z1.2	Z2	MP4	MP5	MP6	MP7	
Parameter	Dimension	Sand	Lehm / Schluff	Ton	IIIA					RKS1 0,4 - 1,4 / AL	RKS2 0,3 - 1,0 / A,U+G	RKS2 1,0 - 2,0 / PG	RKS3 0,4 - 1,5 / PG	
								В	ewertung nach:	Schluff	Schluff	Sand / Kies	Sand / Kies	
eststoff														
Cyanide (ges.)	mg/kg	-	-	-	-	-	3	3	10	<0,3	<0,3	<0,3	<0,3	
EOX	mg/kg	1	1	1	1	1	3	3	10	<1,0	<1,0	<1,0	<1,0	
Arsen	mg/kg	10	15	20	15/20 ¹⁾	15/20 ¹⁾	45	45	150	4,9	6,2	3,3	6	
Blei	mg/kg	40	70	100	100	140	210	210	700	9	8	5	7	
Cadmium	mg/kg	0,4	1	1,5	1	1	3	3	10	<0,2	<0,2	<0,2	<0,2	
Chrom (ges.)	mg/kg	30	60	100	100	120	180	180	600	32	31	25	24	
Kupfer	mg/kg	20	40	60	60	80	120	120	400	7	8	7	7	
Nickel	mg/kg	15	50	70	70	100	150	150	500	20	24	18	20	
Quecksilber	mg/kg	0,1	0,5	1	1	1	1,5	1,5	5	<0,05	<0,05	<0,05	<0,05	
Thallium	mg/kg	0,4	0,7	1	0,7	0,7	2,1	2,1	7	0,2	0,1	<0,1	<0,1	
Zink	mg/kg	60	150	200	200	300	450	450	1500	39	35	24	30	
KW	mg/kg	(100)	(100)	(100)	(100)	200 (400) ²⁾	300 (600) ²⁾	300 (600) ²⁾	1000 (2000) ²⁾	<50 (<50)	<50 (<50)	<50 (<50)	<50 (<50)	
∑ PAK ₁₆ n. EPA	mg/kg	3	3	3	3	3	3	9	30	u.n.	u.n.	u.n.	u.n.	
Benzo(a)pyren	mg/kg	<0,3	<0,3	<0,3	<0,3	<0,6	<0,9	<0,9	<3	<0,05	<0,05	<0,05	<0,05	
∑ LHKW	mg/kg	1	1	1	1	1	1	1	1	u.n.	u.n.	u.n.	u.n.	
∑ BTEX	mg/kg	1	1	1	1	1	1	1	1	u.n.	u.n.	u.n.	u.n.	
∑ PCB ₆	mg/kg	0,05	0,05	0,05	0,05	0,1	0,15	0,15	0,5	u.n.	u.n.	u.n.	u.n.	

¹⁾ Der Wert 15 mg/kg gilt für Sand und Lehm/Schluff; fürTon gilt 20 mg/kg

²⁾ ohne Klammer: Kohlenwasserstoffverbindugngen mit einer Kettenlänge C10 - C22; mit Klammer: Kohlenwasserstoffverbindungen mit einer Kettenlänge von C10 - C40

Eluat													
pH-Wert ³⁾			6,5 - 9	,5		6,5 - 9,5	6 - 12	5,5 - 12	8,3	8,9	8,9	9,1	
Leitfähigkeit ³⁾ μS/cm		250				250	1500	2000	149	68	62	75	
Chlorid mg/l		30					50	100	<2,0	<2,0	<2,0	<2,0	
Sulfat mg/l			50			50	100	150	36	6,8	3,9	13	
Phenolindex μg/l		20					40	100	<10	<10	<10	<10	
Cyanide (ges.) μg/l		5				5	10	20	<5	<5	<5	<5	
Arsen μg/l	-	-	-	14	14	14	20	60	<5	<5	<5	<5	
Blei μg/l	-	-	-	40	40	40	80	200	<5	<5	<5	<5	
Cadmium μg/l	-	-	-	1,5	1,5	1,5	3	6	<0,5	<0,5	<0,5	<0,5	
Chrom μg/l	-	-	-	12,5	12,5	12,5	25	60	< 5	<5	< 5	<5	
Kupfer μg/l	-	-	-	20	20	20	60	100	<5	<5	<5	<5	
Nickel μg/l	-	-	-	15	15	15	20	70	<5	<5	<5	<5	
Quecksilber μg/l	-	-	-	0,5	0,5	0,5	1	2	<0,2	<0,2	<0,2	<0,2	
Thalium μg/l	-	-	-	-	-	-	-	-	<0,5	<0,5	<0,5	<0,5	
Zink μg/l	-	-	-	150	150	150	200	600	<50	<50	<50	<50	

n.u. = nicht untersucht	Daklaration	70	70	70* III A	70* IIIA	
"<" Zeichen oder u.n. =	Deklaration	20	Z0	ZO* IIIA	ZO* IIIA	
unter Nachweisgrenze						

³⁾ Eine Überschreitung dieser Parameter allein ist kein Ausschlusskriterium

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Your labs. Your service.

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

fm geotechnik Herr Klaus Merk Mayrhalde 11 87452 Altusried

A2211024 Neubau Kinderhaus Ebenweiler Anlage 6.1 Prüfbericht Proben MP1 Mu bis MP3 Mu

Messun-

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370843 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670734 Mineralisch/Anorganisches Material

Probeneingang 18.01.2023 Probenahme 14.12.2023

Probenehmer **Auftraggeber (Johannes Granzow)**

Kunden-Probenbezeichnung MP1 Mu

> sicherheit Einheit Ergebnis Best.-Gr. Methode %

Feststoff		Ŭ			
Analyse in der Fraktion < 2mm					DIN 19747 : 2009-07
Fraktion < 2 mm (Wägung)	%	95,3	0,1	+/- 20	DIN 19747 : 2009-07
Trockensubstanz	%	° 47,7	0,1	+/- 6	DIN ISO 11465 : 1996-12
pH-Wert (CaCl2)		6,9	2	+/- 15	DIN ISO 10390 : 2005-12
Bodenart		° IS			VDLUFA I, D 2.1 : 1997(KO)
Humusgehalt	%	16	0,1	+/- 12	DIN ISO 10694 : 1996-08
Cyanide ges.	mg/kg	4,0	0,3	+/- 25	DIN EN ISO 17380 : 2013-10
Königswasseraufschluß		,	•		DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	15	4	+/- 35	DIN EN ISO 11885 : 2009-09
Blei (Pb)	mg/kg	23	4	+/- 53	DIN EN ISO 11885 : 2009-09
Cadmium (Cd)	mg/kg	0,3	0,2	+/- 35	DIN EN ISO 11885 : 2009-09
Chrom (Cr)	mg/kg	39	2	+/- 47	DIN EN ISO 11885 : 2009-09
Kupfer (Cu)	mg/kg	18	2	+/- 33	DIN EN ISO 11885 : 2009-09
Nickel (Ni)	mg/kg	22	3	+/- 33	DIN EN ISO 11885 : 2009-09
Quecksilber	mg/kg	0,13	0,05	+/- 30	DIN ISO 16772 : 2005-06
Zink (Zn)	mg/kg	58,8	6	+/- 40	DIN EN ISO 11885 : 2009-09
Naphthalin	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Acenaphthylen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Acenaphthen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Fluoren	mg/kg	<0,15 ^{m)}	0,15		DIN 38414-23 : 2002-02
Phenanthren	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Anthracen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Fluoranthen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Pyren	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Benzo(a)anthracen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Chrysen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Benzo(b)fluoranthen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Benzo(k)fluoranthen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Benzo(a)pyren	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Dibenz(ah)anthracen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Benzo(ghi)perylen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-02
PAK-Summe (nach EPA)	mg/kg	n.b.			Berechnung aus Messwerten der Einzelparameter

Seite 1 von 3 Deutsche Akkreditierungsstelle D-PL-14289-01-00

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Messun-

23.01.2023 Datum Kundennr. 27064070

PRÜFBERICHT

Symbol

Verfahren sind mit dem

akkreditierte

nicht

Ausschließlich

2018 akkreditiert.

ISO/IEC

DIN EN

gemäß

berichteten Verfahren sind

Dokument

Auftrag Analysennr. Kunden-Probenbezeichnung

3370843 A2211024 Neubau Kinderhaus Ebenweiler 670734 Mineralisch/Anorganisches Material MP1 Mu

sicherheit Ergebnis Best.-Gr. Methode Finheit % DIN ISO 10382: 2003-05 Hexachlorbenzol mg/kg < 0.1 0,1 DIN ISO 14154: 2005-12 <0,10 Pentachlorphenol mg/kg 0,1 PCB (28) DIN EN 15308 : 2008-05 <0,005 0,005 mg/kg PCB (52) <0.005 0,005 DIN EN 15308: 2008-05 mg/kg PCB (101) DIN EN 15308: 2008-05 mg/kg <0,005 0,005 PCB (138) <0.005 0,005 DIN EN 15308 : 2008-05 mg/kg PCB (153) <0,0050 0,005 DIN EN 15308 : 2008-05 mg/kg PCB (180) mg/kg <0,0050 0,005 DIN EN 15308: 2008-05 PCB-Summe Berechnung aus Messwerten der mg/kg n.b. Einzelparameter o,p-DDD <0,05 0,05 DIN ISO 10382: 2003-05 mg/kg p,p-DDE < 0.05 0,05 DIN ISO 10382: 2003-05 mg/kg o,p-DDE mg/kg <0.05 0.05 DIN ISO 10382: 2003-05 DIN ISO 10382 : 2003-05 p,p-DDD mg/kg < 0.05 0,05 DIN ISO 10382: 2003-05 o,p-DDT mg/kg <0,1 0,1 <0,1 DIN ISO 10382: 2003-05 p,p-DDT 0,1 mg/kg Summe DDT/DDE/DDD Berechnung aus Messwerten der n.b. mg/kg Einzelparameter alpha-HCH mg/kg < 0.05 0,05 DIN ISO 10382 : 2003-05 beta-HCH mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 DIN ISO 10382: 2003-05 gamma-HCH (Lindan) mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 delta-HCH mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 epsilon-HCH mg/kg <0,05 0,05 Summe HCH Berechnung aus Messwerten der mg/kg n.b. Einzelparameter DIN ISO 10382 : 2003-05 Aldrin <0.05 0,05 mg/kg

m) Die Nachweis-, bzw. Bestimmungsgrenze musste erhöht werden, da Matrixeffekte bzw. Substanzüberlagerungen eine Quantifizierung erschweren. Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die Berechnung der im vorliegenden Prüfbericht angegebenen kombinierten und erweiterten analytischen Messunsicherheit basiert auf dem GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP und OIML, 2008) und dem Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Der verwendete Erweiterungsfaktor beträgt 2 für ein 95%iges Wahrscheinlichkeitsniveau (Konfidenzintervall).

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

u) externe Dienstleistung eines AGROLAB GROUP Labors

Untersuchung durch

(KO) AGROLAB Agrar und Umwelt GmbH, Breslauer Str. 60, 31157 Sarstedt, für die zitierte Methode akkreditiert nach DIN EN ISO/IEC 17025:2018, Akkreditierungsverfahren: D-PL-14047-01-00 DAkkS

Methoden

VDLUFA I, D 2.1: 1997

Beginn der Prüfungen: 18.01.2023 Ende der Prüfungen: 23.01.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

Seite 2 von 3

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370843 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670734 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung MP1 Mu

AGROLAB Labor GmbH, Christian Reutemann, Tel. 08765/93996-500 serviceteam2.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Geschäftsführer

Dr. Carlo C. Peich Dr. Paul Wimmer

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

fm geotechnik Herr Klaus Merk Mayrhalde 11 87452 Altusried

> Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370843 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670737 Mineralisch/Anorganisches Material

Probeneingang 18.01.2023
Probenahme 14.12.2023

Probenehmer Auftraggeber (Johannes Granzow)

Kunden-Probenbezeichnung MP2 Mu

Messun-sicherheit
Einheit Ergebnis Best.-Gr. % Methode

	LIIIICIL	Ligebilis	JU31O1.	70 Welliode	
Feststoff					
Analyse in der Fraktion < 2mm				DIN 19747 : 2009-07	
Fraktion < 2 mm (Wägung)	%	96,9	0,1	+/- 20 DIN 19747 : 2009-07	
Trockensubstanz	%	° 63,2	0,1	+/- 6 DIN ISO 11465 : 1996-12	2
pH-Wert (CaCl2)		7,3	2	+/- 15 DIN ISO 10390 : 2005-12	2
Bodenart)	° IS		VDLUFA I, D 2.1 : 1997(KO)
Humusgehalt	%	7	0,1	+/- 12 DIN ISO 10694 : 1996-08	3
Cyanide ges.	mg/kg	1,4	0,3	+/- 25 DIN EN ISO 17380 : 2013-	_
Königswasseraufschluß				DIN EN 13657 : 2003-0)1
Arsen (As)	mg/kg	12	4	+/- 35 DIN EN ISO 11885 : 2009-	.09
Blei (Pb)	mg/kg	15	4	+/- 53 DIN EN ISO 11885 : 2009-	
Cadmium (Cd)	mg/kg	<0,2	0,2	DIN EN ISO 11885 : 2009-	
Chrom (Cr)	mg/kg	28	2	+/- 47 DIN EN ISO 11885 : 2009-	
Kupfer (Cu)	mg/kg	9,0	2	+/- 33 DIN EN ISO 11885 : 2009-	
Nickel (Ni)	mg/kg	20	3	+/- 33 DIN EN ISO 11885 : 2009-	
Quecksilber	mg/kg	0,08	0,05	+/- 30 DIN ISO 16772 : 2005-06	
Zink (Zn)	mg/kg	43,1	6	+/- 40 DIN EN ISO 11885 : 2009-	.09
Naphthalin	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	12
Acenaphthylen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	12
Acenaphthen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
Fluoren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
Phenanthren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	12
Anthracen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
Fluoranthen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
Pyren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
Chrysen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
Benzo(b)fluoranthen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	12
Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	12
Benzo(a)pyren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	12
Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	_
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN 38414-23 : 2002-0	
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten of Einzelparameter	der

Seite 1 von 3

DAKKS

Deutsche
Akkreditierungsstelle
D-Pl-14289-01-00

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem Symbol

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

23.01.2023 Datum Kundennr. 27064070

PRÜFBERICHT

Symbol

Verfahren sind mit dem

akkreditierte

nicht

Ausschließlich

ISO/IEC

N N

N

gemäß

3370843 A2211024 Neubau Kinderhaus Ebenweiler Auftrag Analysennr. 670737 Mineralisch/Anorganisches Material Kunden-Probenbezeichnung MP2 Mu

> Messunsicherheit

Ergebnis Best.-Gr. Methode Finheit % DIN ISO 10382: 2003-05 Hexachlorbenzol mg/kg < 0.1 0,1 DIN ISO 14154: 2005-12 Pentachlorphenol <0,10 mg/kg 0,1 PCB (28) DIN EN 15308 : 2008-05 <0,005 0,005 mg/kg PCB (52) <0.005 0,005 DIN EN 15308: 2008-05 mg/kg PCB (101) mg/kg <0,005 0,005 DIN EN 15308: 2008-05 PCB (138) <0,005 0,005 DIN EN 15308 : 2008-05 mg/kg PCB (153) <0,0050 0,005 DIN EN 15308 : 2008-05 mg/kg PCB (180) mg/kg <0,0050 0,005 DIN EN 15308: 2008-05 PCB-Summe Berechnung aus Messwerten der mg/kg n.b. Einzelparameter o,p-DDD <0,05 0,05 DIN ISO 10382: 2003-05 mg/kg p,p-DDE < 0.05 0.05 DIN ISO 10382: 2003-05 mg/kg o,p-DDE mg/kg <0.05 0.05 DIN ISO 10382: 2003-05 DIN ISO 10382: 2003-05 p,p-DDD mg/kg < 0.05 0,05 o,p-DDT DIN ISO 10382: 2003-05 mg/kg <0,1 0,1 <0,1 DIN ISO 10382: 2003-05 p,p-DDT 0,1 mg/kg Summe DDT/DDE/DDD Berechnung aus Messwerten der n.b. mg/kg Einzelparameter alpha-HCH mg/kg < 0.05 0,05 DIN ISO 10382 : 2003-05 beta-HCH mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 DIN ISO 10382: 2003-05 gamma-HCH (Lindan) mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 delta-HCH mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 epsilon-HCH mg/kg <0,05 0,05 Berechnung aus Messwerten der Summe HCH mg/kg n.b. Einzelparameter DIN ISO 10382 : 2003-05 Aldrin mg/kg <0.05 0,05 2018 akkreditiert.

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die Berechnung der im vorliegenden Prüfbericht angegebenen kombinierten und erweiterten analytischen Messunsicherheit basiert auf dem GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP und OIML, 2008) und dem Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Der verwendete Erweiterungsfaktor beträgt 2 für ein 95%iges Wahrscheinlichkeitsniveau (Konfidenzintervall).

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

u) externe Dienstleistung eines AGROLAB GROUP Labors

Untersuchung durch

(KO) AGROLAB Agrar und Umwelt GmbH, Breslauer Str. 60, 31157 Sarstedt, für die zitierte Methode akkreditiert nach DIN EN ISO/IEC 17025:2018, Akkreditierungsverfahren: D-PL-14047-01-00 DAkkS

Methoden

VDLUFA I, D 2.1: 1997

Beginn der Prüfungen: 18.01.2023 Ende der Prüfungen: 23.01.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

ilac-MR/

berichteten Verfahren sind Dokument

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370843 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670737 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung MP2 Mu

AGROLAB Labor GmbH, Christian Reutemann, Tel. 08765/93996-500 serviceteam2.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

fm geotechnik Herr Klaus Merk Mayrhalde 11 87452 Altusried

> Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370843 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670738 Mineralisch/Anorganisches Material

Probeneingang 18.01.2023 Probenahme 14.12.2023

Probenehmer **Auftraggeber (Johannes Granzow)**

	Etaba 14	Foreboile	David On	Messun- sicherheit	Mathanda
	Einheit	Ergebnis	BestGr.	%	Methode
Feststoff					
Analyse in der Fraktion < 2mm					DIN 19747 : 2009-07
Fraktion < 2 mm (Wägung)	%	70,0	0,1	+/- 20	DIN 19747 : 2009-07
Trockensubstanz	% °	76,3	0,1	+/- 6	DIN ISO 11465 : 1996-12
pH-Wert (CaCl2)		7,6	2	+/- 15	DIN ISO 10390 : 2005-12
Bodenart ^{u)}	۰	sL			VDLUFA I, D 2.1 : 1997(KO)
Humusgehalt	%	7	0,1	+/- 12	DIN ISO 10694 : 1996-08
Cyanide ges.	mg/kg	0,7	0,3	+/- 25	DIN EN ISO 17380 : 2013-
Königswasseraufschluß					DIN EN 13657 : 2003-0
Arsen (As)	mg/kg	10	4	+/- 35	DIN EN ISO 11885 : 2009-
Blei (Pb)	mg/kg	18		+/- 53	DIN EN ISO 11885 : 2009-
Cadmium (Cd)	mg/kg	0,2	0,2	+/- 35	DIN EN ISO 11885 : 2009-
Chrom (Cr)	mg/kg	39	2	+/- 47	DIN EN ISO 11885 : 2009-
Kupfer (Cu)	mg/kg	19	2	+/- 33	DIN EN ISO 11885 : 2009-
Nickel (Ni)	mg/kg	27	3	+/- 33	DIN EN ISO 11885 : 2009-
Quecksilber	mg/kg	0,11	0,05	+/- 30	DIN ISO 16772 : 2005-0
Zink (Zn)	mg/kg	60,6	6	+/- 40	DIN EN ISO 11885 : 2009-
Naphthalin	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-0
Acenaphthylen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-0
Acenaphthen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-0
Fluoren	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-0
Phenanthren	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-0
Anthracen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-0
Fluoranthen	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-0
Pyren	mg/kg	<0,05	0,05		DIN 38414-23 : 2002-0
Benzo(a)anthracen	mg/kg	<0,05			DIN 38414-23 : 2002-0
Chrysen	mg/kg	<0,05			DIN 38414-23 : 2002-0
Benzo(b)fluoranthen	mg/kg	<0,05			DIN 38414-23 : 2002-0
Benzo(k)fluoranthen	mg/kg	<0,05			DIN 38414-23 : 2002-0
Benzo(a)pyren	mg/kg	<0,05			DIN 38414-23 : 2002-0
Dibenz(ah)anthracen	mg/kg	<0,05			DIN 38414-23 : 2002-0
Benzo(ghi)perylen	mg/kg	<0,05			DIN 38414-23 : 2002-0
Indeno(1,2,3-cd)pyren	mg/kg	<0,05			DIN 38414-23 : 2002-0
PAK-Summe (nach EPA)	mg/kg	n.b.	-,		Berechnung aus Messwerten Einzelparameter

Seite 1 von 3 Deutsche Akkreditierungsstelle D-PL-14289-01-00

AG Landshut

Geschäftsführer

Dr. Carlo C. Peich Dr. Paul Wimmer

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Symbol

Verfahren sind mit dem

akkreditierte

nicht

Ausschließlich

2018 akkreditiert.

ISO/IEC

N N

N

gemäß

berichteten Verfahren sind

Dokument

Auftrag 3370843 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670738 Mineralisch/Anorganisches Material MP3 Mu

MP3 Mu

Messunsicherheit

Ergebnis Best.-Gr. Methode Finheit % DIN ISO 10382: 2003-05 Hexachlorbenzol mg/kg < 0.1 0,1 DIN ISO 14154: 2005-12 Pentachlorphenol <0,10 mg/kg 0,1 PCB (28) DIN EN 15308 : 2008-05 <0,005 0,005 mg/kg PCB (52) <0.005 0,005 DIN EN 15308: 2008-05 mg/kg PCB (101) mg/kg <0,005 0,005 DIN EN 15308: 2008-05 PCB (138) <0,005 0,005 DIN EN 15308 : 2008-05 mg/kg PCB (153) <0,0050 0,005 DIN EN 15308 : 2008-05 mg/kg PCB (180) mg/kg <0,0050 0,005 DIN EN 15308: 2008-05 PCB-Summe Berechnung aus Messwerten der mg/kg n.b. Einzelparameter o,p-DDD <0,05 0,05 DIN ISO 10382: 2003-05 mg/kg p,p-DDE < 0.05 0,05 DIN ISO 10382: 2003-05 mg/kg o,p-DDE mg/kg <0.05 0.05 DIN ISO 10382: 2003-05 DIN ISO 10382: 2003-05 p,p-DDD mg/kg < 0.05 0,05 DIN ISO 10382: 2003-05 o,p-DDT mg/kg <0,1 0,1 <0,1 DIN ISO 10382: 2003-05 p,p-DDT 0,1 mg/kg Summe DDT/DDE/DDD Berechnung aus Messwerten der n.b. mg/kg Einzelparameter alpha-HCH mg/kg < 0.05 0,05 DIN ISO 10382 : 2003-05 beta-HCH mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 DIN ISO 10382: 2003-05 gamma-HCH (Lindan) mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 delta-HCH mg/kg <0,05 0,05 DIN ISO 10382: 2003-05 epsilon-HCH mg/kg <0,05 0,05 Berechnung aus Messwerten der Summe HCH mg/kg n.b. Einzelparameter DIN ISO 10382 : 2003-05 Aldrin mg/kg <0.05 0,05

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die Berechnung der im vorliegenden Prüfbericht angegebenen kombinierten und erweiterten analytischen Messunsicherheit basiert auf dem GUM (Guide to the expression of uncertainty in measurement, BIPM, IEC, IFCC, ISO, IUPAC, IUPAP und OIML, 2008) und dem Nordtest Report (Handbook for calculation of measurement uncertainty in environmental laboratories (TR 537 (ed. 4) 2017). Der verwendete Erweiterungsfaktor beträgt 2 für ein 95%iges Wahrscheinlichkeitsniveau (Konfidenzintervall).

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

u) externe Dienstleistung eines AGROLAB GROUP Labors

Untersuchung durch

(KO) AGROLAB Agrar und Umwelt GmbH, Breslauer Str. 60, 31157 Sarstedt, für die zitierte Methode akkreditiert nach DIN EN ISO/IEC 17025:2018, Akkreditierungsverfahren: D-PL-14047-01-00 DAkkS

Methoden

VDLUFA I, D 2.1: 1997

Beginn der Prüfungen: 18.01.2023 Ende der Prüfungen: 23.01.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

DAKKS

Deutsche
Akkreditierungsstelle
D-PI-14289-01-00

AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188 Geschäftsführer Dr. Carlo C. Peich Dr. Paul Wimmer

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370843 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670738 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung MP3 Mu

AGROLAB Labor GmbH, Christian Reutemann, Tel. 08765/93996-500 serviceteam2.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

AGROLAB GROUP
Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

fm geotechnik Herr Klaus Merk Mayrhalde 11 87452 Altusried

A2211024 Neubau Kinderhaus Ebenweiler Anlage 6.2 Prüfbericht Proben MP4 bis MP7

> Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670740 Mineralisch/Anorganisches Material

Probeneingang 18.01.2023
Probenahme 14.12.2023

Probenehmer Auftraggeber (Johannes Granzow)

Kunden-Probenbezeichnung MP4

Einheit Ergebnis Best -Gr Methode mit dem **Feststoff** Analyse in der Fraktion < 2mm DIN 19747: 2009-07 Masse Laborprobe 1,10 0,001 DIN 19747: 2009-07 kg DIN EN 14346 : 2007-03, Verfahren Trockensubstanz % 81,0 0,1 Α pH-Wert (CaCl2) 2 7,6 DIN ISO 10390: 2005-12 DIN EN ISO 17380 : 2013-10 0,3 Cyanide ges. mg/kg <0,3 DIN 38414-17: 2017-01 EOX mg/kg <1,0 1 DIN EN 13657 : 2003-01 Königswasseraufschluß nicht DIN EN ISO 17294-2: 2017-01 8,0 Arsen (As) 4,9 mg/kg DIN EN ISO 17294-2: 2017-01 Blei (Pb) mg/kg 9 2 DIN EN ISO 17294-2 : 2017-01 Cadmium (Cd) <0,2 0,2 mg/kg DIN EN ISO 17294-2 : 2017-01 Chrom (Cr) mg/kg 32 1 DIN EN ISO 17294-2: 2017-01 Kupfer (Cu) mg/kg 7 1 17025:2018 akkreditiert. DIN EN ISO 17294-2: 2017-01 Nickel (Ni) mg/kg 20 1 DIN EN ISO 12846 : 2012-08 <0,05 0,05 Quecksilber (Hg) mg/kg DIN EN ISO 17294-2 : 2017-01 Thallium (TI) 0,2 0,1 mg/kg mg/kg DIN EN ISO 17294-2: 2017-01 Zink (Zn) 39 6 DIN EN 14039 : 2005-01 + LAGA Kohlenwasserstoffe C10-C22 (GC) 50 mg/kg <50 KW/04: 2019-09 DIN EN 14039 : 2005-01 + LAGA ISO/IEC Kohlenwasserstoffe C10-C40 mg/kg <50 50 KW/04: 2019-09 Naphthalin 0,05 DIN ISO 18287: 2006-05 mg/kg <0,05 Z N DIN ISO 18287: 2006-05 Acenaphthylen <0,05 0,05 mg/kg N DIN ISO 18287: 2006-05 Acenaphthen mg/kg <0,05 0,05 gemäß DIN ISO 18287: 2006-05 Fluoren <0.05 0,05 mg/kg Phenanthren 0,05 DIN ISO 18287: 2006-05 mg/kg <0,05 sind DIN ISO 18287: 2006-05 Anthracen <0,05 0,05 mg/kg DIN ISO 18287 : 2006-05 berichteten Verfahren Fluoranthen mg/kg <0.05 0.05 DIN ISO 18287 : 2006-05 Pyren mg/kg <0,05 0,05 DIN ISO 18287: 2006-05 Benzo(a)anthracen <0,05 0,05 mg/kg DIN ISO 18287: 2006-05 Chrysen <0,05 0,05 mg/kg Benzo(b)fluoranthen DIN ISO 18287: 2006-05 mg/kg < 0.05 0.05 Benzo(k)fluoranthen <0.05 0,05 DIN ISO 18287: 2006-05 mg/kg DIN ISO 18287: 2006-05 Benzo(a)pyren < 0.05 0,05 mg/kg DIN ISO 18287 : 2006-05 Dibenz(ah)anthracen mg/kg <0.05 0.05 DIN ISO 18287: 2006-05 Benzo(ghi)perylen mg/kg <0,05 0,05 DIN ISO 18287: 2006-05 Indeno(1,2,3-cd)pyren <0,05 0.05 mg/kg

DAKKS

Deutsche
Akkreditierungsstelle
D-P1-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670740 Mineralisch/Anorganisches Material Kunden-Probenbezeichnung MP4

Berechnung aus Messwerten de Einzelparameter DIN EN ISO 22155 : 2016-0 DIN EN ISO 22155 : 2016-0
DIN EN ISO 22155 : 2016-0
DIN EN ISO 22155 : 2016-0 DIN EN ISO 22155 : 2016-0
DIN EN ISO 22155 : 2016-0
DIN FN ISO 22155 : 2016-0
Dil El 100 E 100
DIN EN ISO 22155 : 2016-0
DIN EN ISO 22155 : 2016-0
DIN EN ISO 22155 : 2016-0
Berechnung aus Messwerten de Einzelparameter
DIN EN ISO 22155 : 2016-0
Berechnung aus Messwerten de Einzelparameter
DIN EN 15308 : 2016-12
Berechnung aus Messwerten de Einzelparameter
Berechnung aus Messwerten de Einzelparameter
DIN EN 12457-4 : 2003-01
DIN 38404-4 : 1976-12
DIN EN ISO 10523 : 2012-0
DIN EN 27888 : 1993-11
DIN EN ISO 10304-1 : 2009-07
DIN EN ISO 10304-1 : 2009-0
DIN EN ISO 14402 : 1999-1
DIN EN ISO 14403-2 : 2012-10
DIN EN ISO 17294-2 : 2017-01
DIN EN ISO 17294-2 : 2017-0
DIN EN ISO 17294-2 : 2017-01
DIN EN ISO 17294-2 : 2017-0
DIN EN ISO 17294-2 : 2017-0
DIN EN ISO 17294-2 : 2017-0
DIN EN 100 100 10 00 10 0
DIN EN ISO 12846 : 2012-0
DIN EN ISO 12846 : 2012-0 DIN EN ISO 17294-2 : 2017-0

((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

Die in diesem AG Landshut HRB 7131 Ust/VAT-Id-Nr.: DE 128 944 188

Geschäftsführer Dr. Carlo C. Peich Dr. Paul Wimmer

GROLAB Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

> Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670740 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung MP4

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 18.01.2023 Ende der Prüfungen: 23.01.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Christian Reutemann, Tel. 08765/93996-500 serviceteam2.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Symbol

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

fm geotechnik Herr Klaus Merk Mayrhalde 11 87452 Altusried

> 23.01.2023 Datum Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670742 Mineralisch/Anorganisches Material

Probeneingang 18.01.2023 Probenahme 14.12.2023

Probenehmer Auftraggeber (Johannes Granzow)

Kunden-Probenbezeichnung

Einheit Ergebnis Best -Gr Methode mit dem **Feststoff** Analyse in der Fraktion < 2mm DIN 19747: 2009-07 Masse Laborprobe 1.20 0,001 DIN 19747: 2009-07 Verfahren kg DIN EN 14346 : 2007-03, Verfahren Trockensubstanz % 92,6 0,1 Α pH-Wert (CaCl2) 7.7 2 DIN ISO 10390: 2005-12 DIN EN ISO 17380 : 2013-10 0,3 Cyanide ges. mg/kg <0,3 DIN 38414-17: 2017-01 EOX mg/kg <1,0 1 DIN EN 13657 : 2003-01 Königswasseraufschluß nicht DIN EN ISO 17294-2: 2017-01 8,0 Arsen (As) 6,2 mg/kg DIN EN ISO 17294-2: 2017-01 Blei (Pb) mg/kg 8 2 DIN EN ISO 17294-2 : 2017-01 Cadmium (Cd) <0,2 0,2 mg/kg DIN EN ISO 17294-2 : 2017-01 Chrom (Cr) mg/kg 31 1 DIN EN ISO 17294-2: 2017-01 Kupfer (Cu) mg/kg 8 1 17025:2018 akkreditiert. DIN EN ISO 17294-2: 2017-01 Nickel (Ni) mg/kg 24 1 DIN EN ISO 12846 : 2012-08 0,05 Quecksilber (Hg) <0.05 mg/kg DIN EN ISO 17294-2: 2017-01 Thallium (TI) 0,1 0,1 mg/kg mg/kg DIN EN ISO 17294-2: 2017-01 Zink (Zn) 35 6 DIN EN 14039 : 2005-01 + LAGA Kohlenwasserstoffe C10-C22 (GC) 50 mg/kg < 50 KW/04: 2019-09 DIN EN 14039 : 2005-01 + LAGA ISO/IEC Kohlenwasserstoffe C10-C40 mg/kg <50 50 KW/04: 2019-09 Naphthalin 0,05 DIN ISO 18287: 2006-05 mg/kg <0,05 Z N DIN ISO 18287: 2006-05 Acenaphthylen <0,05 0,05 mg/kg N DIN ISO 18287: 2006-05 Acenaphthen mg/kg <0,05 0,05 gemäß DIN ISO 18287: 2006-05 Fluoren <0.05 0.05 mg/kg Phenanthren 0,05 DIN ISO 18287: 2006-05 mg/kg <0,05 sind DIN ISO 18287: 2006-05 Anthracen <0,05 0,05 mg/kg DIN ISO 18287 : 2006-05 berichteten Verfahren Fluoranthen mg/kg <0.05 0.05 DIN ISO 18287 : 2006-05 Pyren mg/kg <0,05 0,05 DIN ISO 18287: 2006-05 Benzo(a)anthracen <0,05 0,05 mg/kg DIN ISO 18287: 2006-05 Chrysen <0,05 0,05 mg/kg Benzo(b)fluoranthen DIN ISO 18287: 2006-05 mg/kg < 0.05 0.05 DIN ISO 18287: 2006-05 Benzo(k)fluoranthen <0.05 0,05 mg/kg DIN ISO 18287: 2006-05 Benzo(a)pyren < 0.05 0,05 mg/kg DIN ISO 18287 : 2006-05 Dibenz(ah)anthracen mg/kg <0.05 0.05 DIN ISO 18287: 2006-05 Benzo(ghi)perylen mg/kg <0,05 0,05 DIN ISO 18287: 2006-05 Indeno(1,2,3-cd)pyren <0,05 0,05 mg/kg

> ilac-MRA Deutsche Akkreditierungsstelle D-PL-14289-01-00

Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

GROUP

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670742 Mineralisch/Anorganisches Material Kunden-Probenbezeichnung MP5

	Einheit	Ergebnis	BestGr.	Methode
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Dichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
cis-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
trans-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan	mg/kg	<0,02	0,02	DIN EN ISO 22155 : 2016-07
្ត្ Trichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
🖔 Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
LHKW - Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
නි Benzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Toluol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Ethylbenzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
ਛੋਂ m,p-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
틸 o-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Cumol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Styrol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Summe BTX	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
불 PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
ੱਛ੍ਹ PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
हु PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
문 PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
Trichlormethan 1,1-Trichlorethan Trichlorethan Trichlorethan Trichlorethan Tetrachlorethan Tetrachlorethan Tetrachlorethan Tetrachlorethan Tetrachlorethan Tetrachlorethan Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol Summe BTX PCB (28) PCB (28) PCB (101) PCB (118) PCB (138) PCB (138) PCB (180) PCB-Summe PCB-Summe PCB-Summe PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
S Eluat				

Eluat

Eluaterstellung

~	Elaateretellarig				
EC	Temperatur Eluat	°C	21,4	0	DIN 38404-4 : 1976-12
ISO/IEC	pH-Wert		8,9	0	DIN EN ISO 10523 : 2012-04
	elektrische Leitfähigkeit	μS/cm	68	10	DIN EN 27888 : 1993-11
Z O	Chlorid (CI)	mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-07
äß [Sulfat (SO4)	mg/l	6,8	2	DIN EN ISO 10304-1 : 2009-07
gemäß	Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12
	Cyanide ges.	mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-10
eus	Arsen (As)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
fahr	Blei (Pb)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Şe.	Cadmium (Cd)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
eten	Chrom (Cr)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
ich	Kupfer (Cu)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
t Be	Nickel (Ni)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
okument be	Quecksilber (Hg)	mg/l	<0,0002	0,0002	DIN EN ISO 12846 : 2012-08
ok Kr	Thallium (TI)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
em D	Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01
ø.					

Seite 2 von 3 ((DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

DIN EN 12457-4: 2003-01

Die in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 1702!

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670742 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung MP5

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 18.01.2023 Ende der Prüfungen: 23.01.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Christian Reutemann, Tel. 08765/93996-500 serviceteam2.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Symbol

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

fm geotechnik Herr Klaus Merk Mayrhalde 11 87452 Altusried

> Datum 23.01.2023 Kundennr. 27064070

> > Mathoda

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler Analysennr.

670743 Mineralisch/Anorganisches Material

Probeneingang 18.01.2023 Probenahme 14.12.2023

Probenehmer **Auftraggeber (Johannes Granzow)**

Finhait

Kunden-Probenbezeichnung MP6

E e	Einheit	Ergebnis	BestGr.	Methode
Feststoff				
Analyse in der Fraktion < 2mm				DIN 19747 : 2009-07
Masse Laborprobe	kg °	0,50	0,001	DIN 19747 : 2009-07
Trockensubstanz	% °	94,0	0,1	DIN EN 14346 : 2007-03, Verfahrer A
pH-Wert (CaCl2)		8,1	2	DIN ISO 10390 : 2005-12
Cyanide ges.	mg/kg	<0,3	0,3	DIN EN ISO 17380 : 2013-10
EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
Königswasseraufschluß				DIN EN 13657 : 2003-01
Arsen (As)	mg/kg	3,3	0,8	DIN EN ISO 17294-2 : 2017-01
Blei (Pb)	mg/kg	5	2	DIN EN ISO 17294-2 : 2017-01
Cadmium (Cd)	mg/kg	<0,2	0,2	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/kg	25	1	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	mg/kg	7	1	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/kg	18	1	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/kg	<0,1	0,1	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/kg	24	6	DIN EN ISO 17294-2 : 2017-01
Feststoff Analyse in der Fraktion < 2mm Masse Laborprobe Trockensubstanz pH-Wert (CaCl2) Cyanide ges. EOX Königswasseraufschluß Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn) Kohlenwasserstoffe C10-C22 (GC) Kohlenwasserstoffe C10-C40 Naphthalin Acenaphthylen Acenaphthylen Acenaphthen Fluoren Phenanthren Anthracen Fluoranthen Pyren Benzo(a)anthracen Chrysen Benzo(b)fluoranthen Benzo(a)pyren Dibenz(ah)anthracen Benzo(ghi)perylen Indeno(1,2,3-cd)pyren	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Naphthalin	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Acenaphthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Phenanthren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Chrysen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(b)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(a)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Ďibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05

Frachnic

Boot - Gr

Deutsche Akkreditierungsstelle D-PL-14289-01-00

AGROLAB GROUP Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670743 Mineralisch/Anorganisches Material MP6 Kunden-Probenbezeichnung

	Einheit	Ergebnis	BestGr.	Methode
PAK-Summe (nach EPA)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Dichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
cis-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
trans-1,2-Dichlorethen	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Trichlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
1,1,1-Trichlorethan	mg/kg	<0,02	0,02	DIN EN ISO 22155 : 2016-07
Trichlormethan 1,1,1-Trichlorethan Trichlorethen Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlormethan	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
<u>Tetrachlorethen</u>	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Tetrachlorethen LHKW - Summe Benzol Toluol Ethylbenzol m,p-Xylol o-Xylol Cumol Styrol Summe BTX PCB (28) PCB (52) PCB (101) PCB (118) PCB (153) PCB (180) PCB-Summe PCB-Summe PCB-Summe Eluat Eluaterstellung Temperatur Eluat pH-Wert elektrische Leitfähigkeit	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Benzol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Toluol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
<u>Ethylbenzol</u>	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
m,p-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
o-Xylol	mg/kg	<0,05	0,05	DIN EN ISO 22155 : 2016-07
Cumol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Styrol	mg/kg	<0,1	0,1	DIN EN ISO 22155 : 2016-07
Summe BTX	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB (28)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (52)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (101)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (118)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (138)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (153)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB (180)	mg/kg	<0,005	0,005	DIN EN 15308 : 2016-12
PCB-Summe	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
PCB-Summe (6 Kongenere)	mg/kg	n.b.		Berechnung aus Messwerten der Einzelparameter
Eluat				DIN EN 40457 4 0000 04
Eluaterstellung	00	04.0		DIN EN 12457-4 : 2003-01
Temperatur Eluat	°C	21,6	0	DIN 38404-4 : 1976-12 DIN EN ISO 10523 : 2012-04
pH-Wert	uC/om	8,9 62	0	
elektrische Leitfähigkeit	μS/cm	-	10	DIN EN 27888 : 1993-11 DIN EN ISO 10304-1 : 2009-07
Chlorid (CI) Sulfat (SO4) Phenolindex	mg/l	<2,0 3,9	2 2	DIN EN ISO 10304-1 : 2009-07
Dhanalinday	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12
Phenolindex Cyanide ges.	mg/l	<0,01	0,005	DIN EN ISO 14402 : 1999-12 DIN EN ISO 14403-2 : 2012-10
Arsen (As)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Ploi (Ph)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Cyanide ges. Arsen (As) Blei (Pb) Cadmium (Cd) Chrom (Cr) Kupfer (Cu) Nickel (Ni) Quecksilber (Hg) Thallium (Tl) Zink (Zn)	mg/l mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Chrom (Cr)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Kupfer (Cu)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Nickel (Ni)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
Quecksilber (Hg)	mg/l	<0,003	0,0002	DIN EN ISO 12846 : 2012-08
Thallium (TI)	mg/l	<0,0002	0,0002	DIN EN ISO 17294-2 : 2017-01
Zink (Zn)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
	ing/i	~0,03	0,00	2 2 23 17201 2 . 2017-01

(DAkkS Deutsche Akkreditierungsstelle D-PL-14289-01-00

Die in diesen

GROLAB Your labs. Your service.

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

> Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670743 Mineralisch/Anorganisches Material

MP6 Kunden-Probenbezeichnung

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 18.01.2023 Ende der Prüfungen: 20.01.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Christian Reutemann, Tel. 08765/93996-500 serviceteam2.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Symbol

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

AGROLAB Labor GmbH, Dr-Pauling-Str.3, 84079 Bruckberg

fm geotechnik Herr Klaus Merk Mayrhalde 11 87452 Altusried

> Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670744 Mineralisch/Anorganisches Material

Probeneingang 18.01.2023 Probenahme 14.12.2023

Probenehmer **Auftraggeber (Johannes Granzow)**

Kunden-Probenbezeichnung

em 6		Einheit	Ergebnis	BestGr.	Methode
nit d	Feststoff				
indr	Analyse in der Fraktion < 2mm				DIN 19747 : 2009-07
en s	Masse Laborprobe	kg	° 1,40	0,001	DIN 19747 : 2009-07
/erfahr	Trockensubstanz	%	° 91,8	0,1	DIN EN 14346 : 2007-03, Verfahren A
Te/	pH-Wert (CaCl2)		7,9	2	DIN ISO 10390 : 2005-12
ditie	Cyanide ges.	mg/kg	<0,3	0,3	DIN EN ISO 17380 : 2013-10
kkre	EOX	mg/kg	<1,0	1	DIN 38414-17 : 2017-01
hta	Königswasseraufschluß				DIN EN 13657 : 2003-01
nic.	Arsen (As)	mg/kg	6,0	0,8	DIN EN ISO 17294-2 : 2017-01
Slich	Blei (Pb)	mg/kg	7	2	DIN EN ISO 17294-2 : 2017-01
hlie	Cadmium (Cd)	mg/kg	<0,2	0,2	DIN EN ISO 17294-2 : 2017-01
nssc	Chrom (Cr)	mg/kg	24	1	DIN EN ISO 17294-2 : 2017-01
Ę.	Kupfer (Cu)	mg/kg	7	1	DIN EN ISO 17294-2 : 2017-01
ditie	Nickel (Ni)	mg/kg	20	1	DIN EN ISO 17294-2 : 2017-01
ķrē	Quecksilber (Hg)	mg/kg	<0,05	0,05	DIN EN ISO 12846 : 2012-08
8 a	Thallium (TI)	mg/kg	<0,1	0,1	DIN EN ISO 17294-2 : 2017-01
:201	Zink (Zn)	mg/kg	30	6	DIN EN ISO 17294-2 : 2017-01
in diesem Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025;2018 akkreditiert. Ausschließlich nicht akkreditierte Verfahren sind mit dem S	Kohlenwasserstoffe C10-C22 (GC)	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
O/IEC	Kohlenwasserstoffe C10-C40	mg/kg	<50	50	DIN EN 14039 : 2005-01 + LAGA KW/04 : 2019-09
Š	Naphthalin	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Ш Z	Acenaphthylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
3 🖂	Acenaphthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
mäl	Fluoren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
d ge	Phenanthren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
nsin	Anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
hrer	Fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
erfa	Pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
> ue	Benzo(a)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
htet	Chrysen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
eric	Benzo(b)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
ant k	Benzo(k)fluoranthen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
ď	Benzo(a)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
Š	Dibenz(ah)anthracen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
sem	Benzo(ghi)perylen	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05
n die	Indeno(1,2,3-cd)pyren	mg/kg	<0,05	0,05	DIN ISO 18287 : 2006-05

Deutsche Akkreditierungsstelle D-PL-14289-01-00

Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

> Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler Analysennr. 670744 Mineralisch/Anorganisches Material Kunden-Probenbezeichnung MP7

Einheit Ergebnis Best.-Gr. Methode Berechnung aus Messwerten der PAK-Summe (nach EPA) mg/kg n.b. Einzelparameter Dichlormethan mg/kg <0.05 0,05 DIN EN ISO 22155 : 2016-07 cis-1,2-Dichlorethen mg/kg <0,05 0,05 DIN EN ISO 22155 : 2016-07 trans-1,2-Dichlorethen <0,05 0,05 DIN EN ISO 22155: 2016-07 mg/kg DIN EN ISO 22155 : 2016-07 Trichlormethan mg/kg <0,05 0,05 DIN EN ISO 22155 : 2016-07 1,1,1-Trichlorethan mg/kg <0,02 0,02 DIN EN ISO 22155 : 2016-07 Trichlorethen mg/kg <0,05 0,05 DIN EN ISO 22155: 2016-07 Tetrachlormethan <0,05 0,05 mg/kg DIN EN ISO 22155: 2016-07 Tetrachlorethen mg/kg <0,05 0.05 **LHKW - Summe** Berechnung aus Messwerten der Symbol mg/kg n.b. Einzelparameter 0,05 DIN EN ISO 22155 : 2016-07 Benzol <0,05 mg/kg mit dem DIN EN ISO 22155 : 2016-07 0,05 Toluol mg/kg <0,05 DIN EN ISO 22155 : 2016-07 Ethylbenzol <0.05 0,05 mg/kg DIN EN ISO 22155 : 2016-07 m,p-Xylol <0,05 0,05 mg/kg DIN EN ISO 22155: 2016-07 o-Xylol <0,05 0.05 mg/kg DIN EN ISO 22155 : 2016-07 Cumol mg/kg <0,1 0,1 Styrol <0,1 0,1 DIN EN ISO 22155: 2016-07 mg/kg Berechnung aus Messwerten der Summe BTX mg/kg n.b. Einzelparameter PCB (28) <0,005 0,005 mg/kg DIN EN 15308 : 2016-12 DIN EN 15308 : 2016-12 PCB (52) <0,005 0,005 nicht mg/kg PCB (101) <0,005 0,005 DIN EN 15308 : 2016-12 mg/kg DIN EN 15308 : 2016-12 PCB (118) mg/kg <0,005 0,005 PCB (138) mg/kg <0,005 0,005 DIN EN 15308: 2016-12 PCB (153) mg/kg <0,005 0,005 DIN EN 15308: 2016-12 DIN EN 15308 : 2016-12 PCB (180) mg/kg <0,005 0,005 Dokument berichteten Verfahren sind gemäß DIN EN ISO/IEC 17025:2018 akkreditiert. Berechnung aus Messwerten der **PCB-Summe** mg/kg n.b. Einzelparameter Berechnung aus Messwerten der PCB-Summe (6 Kongenere) mg/kg n.b. Einzelparameter **Eluat** Eluaterstellung DIN EN 12457-4: 2003-01 Temperatur Eluat 20,2 DIN 38404-4: 1976-12 °C 0

SO	pH-Wert		9,1	0	DIN EN ISO 10523 : 2012-04
	elektrische Leitfähigkeit	μS/cm	75	10	DIN EN 27888 : 1993-11
	Chlorid (CI)	mg/l	<2,0	2	DIN EN ISO 10304-1 : 2009-07
äß [Sulfat (SO4)	mg/l	13	2	DIN EN ISO 10304-1 : 2009-07
gemäß	Phenolindex	mg/l	<0,01	0,01	DIN EN ISO 14402 : 1999-12
	Cyanide ges.	mg/l	<0,005	0,005	DIN EN ISO 14403-2 : 2012-10
	Arsen (As)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
rfahren	Blei (Pb)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
	Cadmium (Cd)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
eten	Chrom (Cr)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
	Kupfer (Cu)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
	Nickel (Ni)	mg/l	<0,005	0,005	DIN EN ISO 17294-2 : 2017-01
men	Quecksilber (Hg)	mg/l	<0,0002	0,0002	DIN EN ISO 12846 : 2012-08
Dokume	Thallium (TI)	mg/l	<0,0005	0,0005	DIN EN ISO 17294-2 : 2017-01
E	Zink (Zn)	mg/l	<0,05	0,05	DIN EN ISO 17294-2 : 2017-01

Seite 2 von 3 ilac-MRA Deutsche Akkreditierungsstelle D-PL-14289-01-00

Die in diesem

AGROLAB Labor GmbH Dr.-Pauling-Str. 3, 84079 Bruckberg, Germany Fax: +49 (08765) 93996-28 www.agrolab.de

Datum 23.01.2023 Kundennr. 27064070

PRÜFBERICHT

Auftrag 3370848 A2211024 Neubau Kinderhaus Ebenweiler

Analysennr. 670744 Mineralisch/Anorganisches Material

Kunden-Probenbezeichnung MP7

Erläuterung: Das Zeichen "<" oder n.b. in der Spalte Ergebnis bedeutet, der betreffende Stoff ist bei nebenstehender Bestimmungsgrenze nicht quantifizierbar.

Die parameterspezifischen analytischen Messunsicherheiten sowie Informationen zum Berechnungsverfahren sind auf Anfrage verfügbar, sofern die berichteten Ergebnisse oberhalb der parameterspezifischen Bestimmungsgrenze liegen. Die Mindestleistungskriterien der angewandten Verfahren beruhen bezüglich der Messunsicherheit in der Regel auf der Richtlinie 2009/90/EG der Europäischen Kommission.

Die Einwaage zur Untersuchung auf leichtflüchtige organische Substanzen erfolgte im Labor aus der angelieferten Originalprobe. Dieses Vorgehen könnte einen Einfluss auf die Messergebnisse haben.

Die Analysenwerte der Feststoffparameter beziehen sich auf die Trockensubstanz, bei den mit ° gekennzeichneten Parametern auf die Originalsubstanz.

Beginn der Prüfungen: 18.01.2023 Ende der Prüfungen: 20.01.2023

Die Ergebnisse beziehen sich ausschließlich auf die geprüften Gegenstände. In Fällen, wo das Prüflabor nicht für die Probenahme verantwortlich war, gelten die berichteten Ergebnisse für die Proben wie erhalten. Die auszugsweise Vervielfältigung des Berichts ohne unsere schriftliche Genehmigung ist nicht zulässig. Die Ergebnisse in diesem Prüfbericht werden gemäß der mit Ihnen schriftlich gemäß Auftragsbestätigung getroffenen Vereinbarung in vereinfachter Weise i.S. der DIN EN ISO/IEC 17025:2018, Abs. 7.8.1.3 berichtet.

AGROLAB Labor GmbH, Christian Reutemann, Tel. 08765/93996-500 serviceteam2.bruckberg@agrolab.de Kundenbetreuung

Dieser elektronisch übermittelte Ergebnisbericht wurde geprüft und freigegeben. Er entspricht den Anforderungen der EN ISO/IEC 17025:2017 an vereinfachte Ergebnisberichte und ist ohne Unterschrift gültig.

Symbol